论文标题

射频填充射频应用程序的深度学习

Deep Learning for Spectral Filling in Radio Frequency Applications

论文作者

Setzler, Matthew, Coda, Elizabeth, Rounds, Jeremiah, Vann, Michael, Girard, Michael

论文摘要

由于物联网(IoT)的扩散,射频频率(RF)频道越来越充满新型设备,这些设备带有独特而多样化的沟通需求。这在现代数字通信中构成了复杂的挑战,并呼吁开发技术创新,(i)(i)在有限的带宽环境中优化容量(比特率),(ii)与已经部署的RF协议合作,(iii)适应现代数字通信中不断变化的需求。在本文中,我们提出了应用深神网络进行光谱填充的方法。给定带有预先建立的调制方案的RF频道传输数字消息,我们会自动学习以其他消息的形式发送额外信息的新型调制方案,以“围绕”固定调制信号(即,不干扰它们)。这样,我们在不增加带宽的情况下有效地增加了通道容量。我们进一步证明了产生与原始调制非常相似的信号的能力,以便第三方听众无法发现额外消息的存在。我们提出了三个计算实验,证明了我们方法的功效,并通过讨论结果对现代RF应用的含义来结束。

Due to the Internet of Things (IoT) proliferation, Radio Frequency (RF) channels are increasingly congested with new kinds of devices, which carry unique and diverse communication needs. This poses complex challenges in modern digital communications, and calls for the development of technological innovations that (i) optimize capacity (bitrate) in limited bandwidth environments, (ii) integrate cooperatively with already-deployed RF protocols, and (iii) are adaptive to the ever-changing demands in modern digital communications. In this paper we present methods for applying deep neural networks for spectral filling. Given an RF channel transmitting digital messages with a pre-established modulation scheme, we automatically learn novel modulation schemes for sending extra information, in the form of additional messages, "around" the fixed-modulation signals (i.e., without interfering with them). In so doing, we effectively increase channel capacity without increasing bandwidth. We further demonstrate the ability to generate signals that closely resemble the original modulations, such that the presence of extra messages is undetectable to third-party listeners. We present three computational experiments demonstrating the efficacy of our methods, and conclude by discussing the implications of our results for modern RF applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源