论文标题

在度量空间上限制Muckenhoupt和反向Hölder类的条件

Limiting conditions of Muckenhoupt and reverse Hölder classes on metric measure spaces

论文作者

Kurki, Emma-Karoliina

论文摘要

自然最大和最小功能与对数的$ a_ \ infty $上的对数点数下通勤。我们使用此观察结果来表征空间$ a_1 $和$ rh_ \ infty $在公制度量空间上具有加倍措施。由于Muckenhoupt $ a_p $和反向Hölder类的限制案例,它们的行为非常对称。在一般度量测量空间上,为了通过$ a_p $和反向Hölder描述,需要一个额外的几何假设。最后,我们将表征应用于$ A_1 $和$ RH_ \ infty $的几种已知属性的简单证明,包括精致的Jones分解定理。此外,我们还显示了自然最大功能的界限。

The natural maximal and minimal functions commute pointwise with the logarithm on $A_\infty$. We use this observation to characterize the spaces $A_1$ and $RH_\infty$ on metric measure spaces with a doubling measure. As the limiting cases of Muckenhoupt $A_p$ and reverse Hölder classes, respectively, their behavior is remarkably symmetric. On general metric measure spaces, an additional geometric assumption is needed in order to pass between $A_p$ and reverse Hölder descriptions. Finally, we apply the characterization to give simple proofs of several known properties of $A_1$ and $RH_\infty$, including a refined Jones factorization theorem. In addition, we show a boundedness result for the natural maximal function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源