论文标题
MUON G-2带有重叠价费米子
Muon g-2 with overlap valence fermions
论文作者
论文摘要
We present a lattice calculation of the leading order (LO) hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment for the connected light and strange quarks, $a^{\rm W}_{{\rm con}, l/s}$ in the widely used window $t_0=0.4~\mathrm{fm}$, $ t_1 = 1.0〜 \ mathrm {fm} $,$δ= 0.15〜 \ mathrm {fm} $,以及$ a^{\ rm s} _ {{\ rm con},l/s con},l/s s} $。我们在4个物理合奏中使用重叠费米。两个2+1风味RBC/UKQCD共同使用域壁费(DWF)(DWF)和Iwasaki计量表的动作,$ a = 0.084 $和0.114 FM,以及两个2+1+1+1 Flavor Milc Ensembles使用高度改进的交错夸克(HISQ)和Symanzik Quake(HISMANZIK)和SYMANZIK CAGUGE,以$ A = 0.088 $和0.088 $和0.121 FM和0.121 FM。我们已从3个额外的DWF合奏中校正了无限的量校正,该合奏在$ {\ rm l} $ = 4.8、6.4和9.6 FM和物理胎质量。对于$ a^{\ rm w} _ {{\ rm con},l} $,我们发现我们在两个较小的晶格间距上的结果与使用统一设置的晶格间距是一致的,但是在两个粗糙的晶状体间隔处的结果略有不同。 Eventually, we predict $a^{\rm W}_{{\rm con}, l}=206.7(1.5)(1.0)$ and $a^{\rm W}_{{\rm con}, s}=26.8(0.1)(0.3)$, using linear extrapolation in $a^2$, with systematic uncertainties estimated from the difference of RBC/UKQCD和MILC合奏的中心价值。
We present a lattice calculation of the leading order (LO) hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment for the connected light and strange quarks, $a^{\rm W}_{{\rm con}, l/s}$ in the widely used window $t_0=0.4~\mathrm{fm}$, $t_1=1.0~\mathrm{fm}$, $Δ=0.15~\mathrm{fm}$, and also of $a^{\rm S}_{{\rm con}, l/s}$ in the short distance region. We use overlap fermions on 4 physical-point ensembles. Two 2+1 flavor RBC/UKQCD ensembles use domain wall fermions (DWF) and Iwasaki gauge actions at $a = 0.084$ and 0.114 fm, and two 2+1+1 flavor MILC ensembles use the highly improved staggered quark (HISQ) and Symanzik gauge actions at $a = 0.088$ and 0.121 fm. We have incorporated infinite volume corrections from 3 additional DWF ensembles at ${\rm L}$ = 4.8, 6.4 and 9.6 fm and physical pion mass. For $a^{\rm W}_{{\rm con}, l}$, we find that our results on the two smaller lattice spacings are consistent with those using the unitary setup, but those at the two coarser lattice spacings are slightly different. Eventually, we predict $a^{\rm W}_{{\rm con}, l}=206.7(1.5)(1.0)$ and $a^{\rm W}_{{\rm con}, s}=26.8(0.1)(0.3)$, using linear extrapolation in $a^2$, with systematic uncertainties estimated from the difference of the central values from the RBC/UKQCD and MILC ensembles.