论文标题
对齐轮廓拓扑用于自适应3D人姿势恢复
Aligning Silhouette Topology for Self-Adaptive 3D Human Pose Recovery
论文作者
论文摘要
以铰接为中心的2D/3D姿势监督构成了大多数现有3D人类姿势估计技术的核心训练目标。除了合成源环境外,在部署时为每个实际目标域获得如此丰富的监督是很不便的。但是,我们意识到,标准前景轮廓估计技术(在静态相机供稿上)仍然不受域转移的影响。在此激励的情况下,我们提出了一个新型的目标适应框架,该框架仅依靠轮廓监督来调整基于源训练的模型回归器。但是,在没有任何辅助提示(多视图,深度或2D姿势)的情况下,孤立的轮廓损失无法提供可靠的姿势特异性梯度,并且需要以拓扑为中心的损失同时使用。为此,我们开发了一系列对卷积友好的空间转换,以将拓扑骨骼表示与RAW Silhouette脱离。这样的设计为通过距离场计算而设计的曲折的空间拓扑结构损失铺平了道路,同时有效地避免了任何梯度阻碍的空间到点映射。实验结果证明了我们在自我适应源训练的模型中对不同标记的目标域(例如a)内部数据集,b)低分辨率图像结构域以及c)对抗受扰动的图像域(通过UAP)的优势。
Articulation-centric 2D/3D pose supervision forms the core training objective in most existing 3D human pose estimation techniques. Except for synthetic source environments, acquiring such rich supervision for each real target domain at deployment is highly inconvenient. However, we realize that standard foreground silhouette estimation techniques (on static camera feeds) remain unaffected by domain-shifts. Motivated by this, we propose a novel target adaptation framework that relies only on silhouette supervision to adapt a source-trained model-based regressor. However, in the absence of any auxiliary cue (multi-view, depth, or 2D pose), an isolated silhouette loss fails to provide a reliable pose-specific gradient and requires to be employed in tandem with a topology-centric loss. To this end, we develop a series of convolution-friendly spatial transformations in order to disentangle a topological-skeleton representation from the raw silhouette. Such a design paves the way to devise a Chamfer-inspired spatial topological-alignment loss via distance field computation, while effectively avoiding any gradient hindering spatial-to-pointset mapping. Experimental results demonstrate our superiority against prior-arts in self-adapting a source trained model to diverse unlabeled target domains, such as a) in-the-wild datasets, b) low-resolution image domains, and c) adversarially perturbed image domains (via UAP).