论文标题
右角Artin团体的封面
Amenable covers of right-angled Artin groups
论文作者
论文摘要
令$ a_l $为与有限旗复合$ l $相关的右角Artin组。我们表明,$ a_l $的不友善类别等于右角coxeter组$ w_l $的虚拟共同体学维度。尤其是,右角的Artin群体满足了一个问题的问题,即cavilla--löh--moraschini提出了不平等类别与法伯的拓扑复杂性之间的不平等。
Let $A_L$ be the right-angled Artin group associated to a finite flag complex $L$. We show that the amenable category of $A_L$ equals the virtual cohomological dimension of the right-angled Coxeter group $W_L$. In particular, right-angled Artin groups satisfy a question of Capovilla--Löh--Moraschini proposing an inequality between the amenable category and Farber's topological complexity.