论文标题

可压缩的Navier的奇异极限 - 用硬球压力定律在扩展域上使用硬球体压力定律

Singular limit for the compressible Navier--Stokes equations with the hard sphere pressure law on expanding domains

论文作者

Kalousek, Martin, Necasova, Sarka

论文摘要

该文章致力于可压缩的Navier-Stokes系统的渐近极限,并在扩展到整个物理空间$ r^3 $的域上遵守硬度状态方程。在假设不准备数据的情况下产生的声波在给定的时间间隔内未达到扩展域的边界,以及雷诺和马赫数与MACH数字以及扩展域的半径之间的一定关系,我们证明目标系统是$ r^3 $上不可压缩的Euler系统。我们还提供了以特征数和域半径表示的收敛速率的估计。

The article is devoted to the asymptotic limit of the compressible Navier-Stokes system with a pressure obeying a hard--sphere equation of state on a domain expanding to the whole physical space $R^3$. Under the assumptions that acoustic waves generated in the case of ill-prepared data do not reach the boundary of the expanding domain in the given time interval and a certain relation between the Reynolds and Mach numbers and the radius of the expanding domain, we prove that the target system is the incompressible Euler system on $R^3$. We also provide an estimate of the rate of convergence expressed in terms of characteristic numbers and the radius of domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源