论文标题
在高斯时间和calderón投影仪中线性重力的灯芯旋转
Wick rotation of linearized gravity in Gaussian time and Calderón projectors
论文作者
论文摘要
通过线性重力的量化,我们考虑了固定的线性化的爱因斯坦方程及其在凯奇表面附近的灯芯旋转。我们表明,用于Wick-Rot的方程式的Calderón投影仪在Lorentzian一级诱导Hadamard Bi-Solutions。另一方面,我们发现量化量的平滑障碍物和量化所需的积极条件。这些障碍主要是由于灯芯旋转理论中产生的边界项,并取决于边界条件。
Motivated by the quantization of linearized gravity, we consider gauge-fixed linearized Einstein equations and their Wick rotation near a Cauchy surface. We show that Calderón projectors for the Wick-rotated equations induce Hadamard bi-solutions on the Lorentzian level. On the other hand, we find smoothing obstructions to gauge-invariance and positivity conditions needed in quantization. These obstructions are primarily due to boundary terms arising in the Wick-rotated theory and depend on the boundary conditions.