论文标题

DST:无数据黑盒攻击的动态替代培训

DST: Dynamic Substitute Training for Data-free Black-box Attack

论文作者

Wang, Wenxuan, Qian, Xuelin, Fu, Yanwei, Xue, Xiangyang

论文摘要

深度神经网络模型在各种计算机视觉任务中的广泛应用,越来越多的作品研究了模型易受对抗性示例的脆弱性。对于无数据的黑匣子攻击方案,现有方法是受知识蒸馏的启发,因此通常训练替代模型,以使用生成的数据作为输入来从目标模型中学习知识。但是,替代模型始终具有静态网络结构,该结构限制了各种目标模型和任务的攻击能力。在本文中,我们提出了一种新型的动态替代训练攻击方法,以鼓励替代模型从目标模型中学习更好,更快。具体而言,提出了一种动态替代结构学习策略,以根据不同的目标模型和任务通过动态门自适应地生成最佳替代模型结构。此外,我们引入了一个基于任务的基于图的结构信息学习限制,以提高生成的培训数据的质量,并促进替代模型学习的结构关系。已经进行了广泛的实验来验证所提出的攻击方法的功效,与几个数据集中的最先进的竞争对手相比,该方法可以取得更好的性能。

With the wide applications of deep neural network models in various computer vision tasks, more and more works study the model vulnerability to adversarial examples. For data-free black box attack scenario, existing methods are inspired by the knowledge distillation, and thus usually train a substitute model to learn knowledge from the target model using generated data as input. However, the substitute model always has a static network structure, which limits the attack ability for various target models and tasks. In this paper, we propose a novel dynamic substitute training attack method to encourage substitute model to learn better and faster from the target model. Specifically, a dynamic substitute structure learning strategy is proposed to adaptively generate optimal substitute model structure via a dynamic gate according to different target models and tasks. Moreover, we introduce a task-driven graph-based structure information learning constrain to improve the quality of generated training data, and facilitate the substitute model learning structural relationships from the target model multiple outputs. Extensive experiments have been conducted to verify the efficacy of the proposed attack method, which can achieve better performance compared with the state-of-the-art competitors on several datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源