论文标题
自动转换自然到统一建模语言:系统评价
Automatic Transformation of Natural to Unified Modeling Language: A Systematic Review
论文作者
论文摘要
上下文:处理软件需求规格(SRS)手动需要更长的时间来完成软件工程的要求分析师。研究人员一直在努力采用自动方法来简化这项任务。大多数现有方法都需要分析师的一定干预或具有挑战性的使用。一些自动和半自动方法是根据启发式规则或机器学习算法开发的。但是,对UML产生的现有方法有各种限制,例如对歧义,长度或结构的限制,Aphora,不完整,输入文本的原理,域本体论的要求等。目的:本研究旨在更好地了解现有系统的有效性,并为进一步改进的概念框架提供进一步的改进指南。方法:我们进行了系统文献综述(SLR)。我们将研究选择分为两个阶段,并选择了70篇论文。我们通过手动提取信息,交叉检查和验证我们的发现来进行定量和定性分析。结果:我们描述了现有的方法,并揭示了这些作品中观察到的问题。我们确定并聚集了选定文章的局限性和好处。结论:这项研究坚持了共同数据集和评估框架的必要性,以始终如一地扩展研究。它还描述了研究人员面临的自然语言处理障碍的重要性。此外,它为未来的研究创造了前进的途径。
Context: Processing Software Requirement Specifications (SRS) manually takes a much longer time for requirement analysts in software engineering. Researchers have been working on making an automatic approach to ease this task. Most of the existing approaches require some intervention from an analyst or are challenging to use. Some automatic and semi-automatic approaches were developed based on heuristic rules or machine learning algorithms. However, there are various constraints to the existing approaches of UML generation, such as restriction on ambiguity, length or structure, anaphora, incompleteness, atomicity of input text, requirements of domain ontology, etc. Objective: This study aims to better understand the effectiveness of existing systems and provide a conceptual framework with further improvement guidelines. Method: We performed a systematic literature review (SLR). We conducted our study selection into two phases and selected 70 papers. We conducted quantitative and qualitative analyses by manually extracting information, cross-checking, and validating our findings. Result: We described the existing approaches and revealed the issues observed in these works. We identified and clustered both the limitations and benefits of selected articles. Conclusion: This research upholds the necessity of a common dataset and evaluation framework to extend the research consistently. It also describes the significance of natural language processing obstacles researchers face. In addition, it creates a path forward for future research.