论文标题
爆炸非线性漂移的反应扩散转化问题的升级
Upscaling of a reaction-diffusion-convection problem with exploding non-linear drift
论文作者
论文摘要
我们研究了在具有定期布置障碍的域中构成的非线性漂移的反应扩散交流问题。漂移中的非线性与完全不对称的简单排除过程(TASEP)的流体动力极限有关,该界限管理着与障碍物跨越域的相互作用粒子的种群。由于施加了较大的漂移缩放,因此这种非线性有望在消失缩放参数的极限下爆炸。作为主要的工作技术,我们采用了两尺度的形式均质化渐进化渐近化,以得出相应的上尺度模型方程以及有效的传输张量的结构。最后,我们使用Schauder的固定点定理以及单调性论证来研究在无限域中提出的高尺度模型的弱解决性。这项研究希望在设计抗高速效果的薄复合材料时需要做出理论理解。
We study a reaction-diffusion-convection problem with nonlinear drift posed in a domain with periodically arranged obstacles. The non-linearity in the drift is linked to the hydrodynamic limit of a totally asymmetric simple exclusion process (TASEP) governing a population of interacting particles crossing a domain with obstacle. Because of the imposed large drift scaling, this nonlinearity is expected to explode in the limit of a vanishing scaling parameter. As main working techniques, we employ two-scale formal homogenization asymptotics with drift to derive the corresponding upscaled model equations as well as the structure of the effective transport tensors. Finally, we use Schauder's fixed point theorem as well as monotonicity arguments to study the weak solvability of the upscaled model posed in an unbounded domain. This study wants to contribute with theoretical understanding needed when designing thin composite materials that are resistant to high velocity impacts.