论文标题
从原点云中提取多个圆的深度拟合的深度代数拟合
Deep Algebraic Fitting for Multiple Circle Primitives Extraction from Raw Point Clouds
论文作者
论文摘要
圆形的形状是人造工程对象的基本几何基原始人之一。因此,从扫描点云中提取圆圈是3D几何数据处理中非常重要的任务。但是,现有的圆提取方法要么在分类圆圈 - 边界点时对原始点云的质量敏感,要么在回归圆圈参数时需要精心设计的拟合功能。为了缓解挑战,我们提出了一个基于深度圆形 - 边界点特征学习和加权代数拟合的协同作用的端到端云圆圈代数拟合网络(圆网)。首先,我们设计了一个圆形学习模块,该模块考虑了每个点的本地和全局相邻上下文,以检测所有潜在的圆形边界点。其次,我们为加权代数拟合而开发了一个基于深度特征的圆形参数学习模块,而无需设计任何重量度量,以避免在拟合过程中避免异常值的影响。与大多数尖端的圆提取智慧不同,所提出的分类和拟合模块最初与综合损失相共训练,以提高既定数据集上提取的圆圈的质量,并且在确定的点云上,并且在噪声和萃取精度方面表现出了圆圈的明确改进,而圆圈的改进明显地改进了Sotas。我们将在出版时发布我们的代码,模型和数据,以在Github上进行培训和评估。
The shape of circle is one of fundamental geometric primitives of man-made engineering objects. Thus, extraction of circles from scanned point clouds is a quite important task in 3D geometry data processing. However, existing circle extraction methods either are sensitive to the quality of raw point clouds when classifying circle-boundary points, or require well-designed fitting functions when regressing circle parameters. To relieve the challenges, we propose an end-to-end Point Cloud Circle Algebraic Fitting Network (Circle-Net) based on a synergy of deep circle-boundary point feature learning and weighted algebraic fitting. First, we design a circle-boundary learning module, which considers local and global neighboring contexts of each point, to detect all potential circle-boundary points. Second, we develop a deep feature based circle parameter learning module for weighted algebraic fitting, without designing any weight metric, to avoid the influence of outliers during fitting. Unlike most of the cutting-edge circle extraction wisdoms, the proposed classification-and-fitting modules are originally co-trained with a comprehensive loss to enhance the quality of extracted circles.Comparisons on the established dataset and real-scanned point clouds exhibit clear improvements of Circle-Net over SOTAs in terms of both noise-robustness and extraction accuracy. We will release our code, model, and data for both training and evaluation on GitHub upon publication.