论文标题

免费午餐与人重新识别:从自动产生的嘈杂曲目中学习

A Free Lunch to Person Re-identification: Learning from Automatically Generated Noisy Tracklets

论文作者

Teng, Hehan, He, Tao, Guo, Yuchen, Guo, Zhenhua, Ding, Guiguang

论文摘要

已经提出了一系列基于视频的重新识别(RE-ID)方法,以解决注释RE-ID数据集所需的高人工成本问题。但是他们的表现仍然远低于受监督的同行。同时,在这些方法中使用了没有噪声的清洁数据集,这是不现实的。在本文中,我们建议通过通过多个对象跟踪(MOT)算法从自动生成的人曲目中学习重新ID模型来解决此问题。为此,我们设计了一个基于轨道的多级聚类(TMC)框架,以有效地从嘈杂的人曲目中学习重新ID模型。首先,轨道内隔离以减少轨道上的ID开关噪声;其次,使用伪造标签消除ID碎片噪声和网络训练之间的交替。在各种手动产生的噪声的火星上进行了广泛的实验,显示了所提出的框架的有效性。具体而言,所提出的框架在模拟轨迹上达到了MAP 53.4%和排名63.7%,即使噪音最强,甚至超过了清洁曲目上最好的现有方法。根据结果​​,我们认为,自动生成的嘈杂曲目是一种合理的方法,也将是使重新ID模型在现实世界应用中可行的重要方法。

A series of unsupervised video-based re-identification (re-ID) methods have been proposed to solve the problem of high labor cost required to annotate re-ID datasets. But their performance is still far lower than the supervised counterparts. In the mean time, clean datasets without noise are used in these methods, which is not realistic. In this paper, we propose to tackle this problem by learning re-ID models from automatically generated person tracklets by multiple objects tracking (MOT) algorithm. To this end, we design a tracklet-based multi-level clustering (TMC) framework to effectively learn the re-ID model from the noisy person tracklets. First, intra-tracklet isolation to reduce ID switch noise within tracklets; second, alternates between using inter-tracklet association to eliminate ID fragmentation noise and network training using the pseudo label. Extensive experiments on MARS with various manually generated noises show the effectiveness of the proposed framework. Specifically, the proposed framework achieved mAP 53.4% and rank-1 63.7% on the simulated tracklets with strongest noise, even outperforming the best existing method on clean tracklets. Based on the results, we believe that building re-ID models from automatically generated noisy tracklets is a reasonable approach and will also be an important way to make re-ID models feasible in real-world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源