论文标题

Scinobo:分层多标签科学出版物的分类器

SciNoBo : A Hierarchical Multi-Label Classifier of Scientific Publications

论文作者

Gialitsis, Nikolaos, Kotitsas, Sotiris, Papageorgiou, Haris

论文摘要

根据科学出版物(FOS)分类法对科学出版物进行分类至关重要,使资助者,出版商,学者,公司和其他利益相关者能够更有效地组织科学文献。大多数现有的作品都在会场层面或仅基于研究出版物的文本内容上解决分类。我们介绍了Scinobo,这是一种新型出版物的分类系统,用于预定义的FOS分类法,利用出版物的结构属性及其在多层网络中组织的引用和参考。与其他作品相反,我们的系统通过考虑其多学科潜力来支持多个领域的出版物。通过统一由共同多层网络结构组成的出版物和场地,由引用和发布关系组成,可以通过出版级分类来增强场地级别的分类。我们在从Microsoft学术图中提取的出版物的数据集上评估了Scinobo,并针对最先进的神经网络基线进行了比较分析。结果表明,我们提出的系统能够生成高质量的出版物分类。

Classifying scientific publications according to Field-of-Science (FoS) taxonomies is of crucial importance, allowing funders, publishers, scholars, companies and other stakeholders to organize scientific literature more effectively. Most existing works address classification either at venue level or solely based on the textual content of a research publication. We present SciNoBo, a novel classification system of publications to predefined FoS taxonomies, leveraging the structural properties of a publication and its citations and references organised in a multilayer network. In contrast to other works, our system supports assignments of publications to multiple fields by considering their multidisciplinarity potential. By unifying publications and venues under a common multilayer network structure made up of citing and publishing relationships, classifications at the venue-level can be augmented with publication-level classifications. We evaluate SciNoBo on a publications' dataset extracted from Microsoft Academic Graph and we perform a comparative analysis against a state-of-the-art neural-network baseline. The results reveal that our proposed system is capable of producing high-quality classifications of publications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源