论文标题

可压缩速度转换,用于各种非规范壁构成的湍流

Compressible Velocity Transformations for Various Noncanonical Wall-Bounded Turbulent Flows

论文作者

Bai, Tianyi, Griffin, Kevin P., Fu, Lin

论文摘要

这项工作通过将其应用于几种类型的非典型可压缩壁构成的湍流流量来评估速度轮廓的几种流行转换。具体而言,这项工作探讨了具有离解和振动激发,超临界通道和边界层流以及带压力梯度的绝热边界层的DNS数据库。所考虑的转换包括van Driest [Van Driest,J。Aeronaut。 Sci。,18(1951):145-216],Zhang等。 [Zhang等人,物理。 Rev. Lett。,109(2012):054502],Trettel-Larsson [Trettel and Larsson,Phys。 Fluids,28(2016):026102],数据驱动[Volpiani等,物理学。 Fluids Rev.,5(2020):052602]和总压力[Griffin等,Proc。纳特。学院。科学。美国,118(2021):E2111144118]转换。 Trettel-Larsson转换折叠了高触觉时间边界层的速度曲线,而不是所考虑的空间边界层。对于超临界通道流,特雷特尔 - 拉尔森转换在整个内层上也表现良好。上面的转换都不适用于超临界边界层。对于所有考虑的方法,具有弱压力梯度的边界层的转换速度曲线与壁的通用不可压缩定律很好地吻合。总而言之,所有这些流行的方法都无法为对数区域中的非典型可压缩壁构成的流动提供统一的性能,并且需要一个更复杂的版本,该版本需要这些不同的物理学。数据驱动和基于压力的全部转换在粘性的子层中表现良好,用于所有考虑的流动。

This work assesses several popular transformations for the velocity profile through their application to several types of non-canonical compressible wall-bounded turbulent flows. Specifically, this work explores DNS databases of high-enthalpy boundary layers with dissociation and vibrational excitation, supercritical channel and boundary-layer flows, and adiabatic boundary layers with pressure gradients. The transformations considered include the van Driest [Van Driest, J. Aeronaut. Sci., 18(1951):145-216], Zhang et al. [Zhang et al., Phys. Rev. Lett., 109(2012):054502], Trettel-Larsson [Trettel and Larsson, Phys. Fluids, 28(2016):026102], data-driven [Volpiani et al., Phys. Rev. Fluids, 5(2020):052602], and total-stress-based [Griffin et al., Proc. Natl. Acad. Sci. U.S.A., 118(2021):e2111144118] transformations. The Trettel-Larsson transformation collapses velocity profiles of high-enthalpy temporal boundary layers but not the spatial boundary layers considered. For supercritical channel flows, the Trettel-Larsson transformation also performs well over the entire inner layer. None of the transformations above works for supercritical boundary layers. For all the considered methods, the transformed velocity profiles of boundary layers with weak pressure gradients coincide well with the universal incompressible law of the wall. In summary, all these popular methods fail to deliver uniform performance for non-canonical compressible wall-bounded flows in the logarithmic region, and a more sophisticated version, which accounts for these different physics, is needed. The data-driven and total-stress-based transformations perform well in the viscous sublayer for all the considered flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源