论文标题

Simbar:基于单图的场景重新确定有效数据增强,以进行自动驾驶视觉任务

SIMBAR: Single Image-Based Scene Relighting For Effective Data Augmentation For Automated Driving Vision Tasks

论文作者

Zhang, Xianling, Tseng, Nathan, Syed, Ameerah, Bhasin, Rohan, Jaipuria, Nikita

论文摘要

现实世界的自动驾驶数据集由路上不同驱动器汇总的图像组成。重新捕获场景以可控的方式捕获了看不见的照明条件的能力,这是一个机会,可以增强具有更丰富的照明条件的数据集,类似于现实世界中遇到的情况。本文提出了一种新型的基于图像的重新考虑管道Simbar,该管道可以与单个图像一起用作输入。据我们所知,在现场重新确保从单个图像中利用明确的几何表示。我们介绍了与先前的多视图场景重新确定基线的定性比较。为了进一步验证并有效量化利用Simbar以增加数据增强的自动驾驶视力任务的好处,使用一种最先进的方法进行对象检测和跟踪实验,多个对象跟踪准确性(MOTA)是93.3%的93.3%,它是通过中心网络上的基准占9.0%的基准占基准的最初进步,以实现9.0%的基准,超过了9.0%的基准。 Kitti都是从头开始训练并在Virtual Kitti上测试的模型。有关更多详细信息和Simbar Relit数据集,请访问我们的项目网站(https://simbarv1.github.io/)。

Real-world autonomous driving datasets comprise of images aggregated from different drives on the road. The ability to relight captured scenes to unseen lighting conditions, in a controllable manner, presents an opportunity to augment datasets with a richer variety of lighting conditions, similar to what would be encountered in the real-world. This paper presents a novel image-based relighting pipeline, SIMBAR, that can work with a single image as input. To the best of our knowledge, there is no prior work on scene relighting leveraging explicit geometric representations from a single image. We present qualitative comparisons with prior multi-view scene relighting baselines. To further validate and effectively quantify the benefit of leveraging SIMBAR for data augmentation for automated driving vision tasks, object detection and tracking experiments are conducted with a state-of-the-art method, a Multiple Object Tracking Accuracy (MOTA) of 93.3% is achieved with CenterTrack on SIMBAR-augmented KITTI - an impressive 9.0% relative improvement over the baseline MOTA of 85.6% with CenterTrack on original KITTI, both models trained from scratch and tested on Virtual KITTI. For more details and SIMBAR relit datasets, please visit our project website (https://simbarv1.github.io/).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源