论文标题
Rydberg Atom Arrays中的紧急$ \ Mathbb {Z} _2 $量表理论和拓扑激励
Emergent $\mathbb{Z}_2$ gauge theories and topological excitations in Rydberg atom arrays
论文作者
论文摘要
Rydberg原子的强烈相互作用的阵列提供了多功能平台,用于探索异国情调的多体相和相关量子系统的动态。在最近的实验进步的推动下,我们表明,Rydberg相互作用和适当的晶格几何形状的组合自然会导致出现的$ \ Mathbb {Z} _2 $ g量规理论,这些理论赋予了物质领域。基于此映射,我们描述了Rydberg平台如何实现两种不同类别的拓扑$ \ mathbb {z} _2 $量子旋转液体,它们在翻译对称分数的模式上有所不同。我们还讨论了这些$ \ mathbb {z} _2 $旋转液态的分数激发的本质,同时使用费莫尼克和波斯型parton理论旋转液态,并说明了它们与近端固体相的丰富相互作用。
Strongly interacting arrays of Rydberg atoms provide versatile platforms for exploring exotic many-body phases and dynamics of correlated quantum systems. Motivated by recent experimental advances, we show that the combination of Rydberg interactions and appropriate lattice geometries naturally leads to emergent $\mathbb{Z}_2$ gauge theories endowed with matter fields. Based on this mapping, we describe how Rydberg platforms could realize two distinct classes of topological $\mathbb{Z}_2$ quantum spin liquids, which differ in their patterns of translational symmetry fractionalization. We also discuss the natures of the fractionalized excitations of these $\mathbb{Z}_2$ spin liquid states using both fermionic and bosonic parton theories, and illustrate their rich interplay with proximate solid phases.