论文标题

使用神经网络在T2 MRI中的通用淋巴结检测

Universal Lymph Node Detection in T2 MRI using Neural Networks

论文作者

Mathai, Tejas Sudharshan, Lee, Sungwon, Shen, Thomas C., Lu, Zhiyong, Summers, Ronald M.

论文摘要

目的:鉴定对T2磁共振成像(MRI)扫描中可疑转移的腹淋巴结(LN)对于分期淋巴增生性疾病至关重要。 LN检测的先前工作仅限于单个MR切片中人体的特定解剖区域(骨盆,直肠)。因此,非常需要开发一种通用方法来检测完整T2 MRI体积的LN。 方法:在这项研究中,提出了使用神经网络在体积T2 MRI中普遍识别腹部LN的计算机辅助检测(CAD)管道。首先,我们训练了各种神经网络模型,用于检测LN:更快的RCNN,带有和没有硬性示例挖掘(HNEM),FCOS,FOVEABOX,VFNET和检测变压器(DETR)。接下来,我们表明,具有自适应训练样本选择(ATS)的最先进(SOTA)VFNET模型与HNEM的表现更快。最后,我们结束了超过45%MAP阈值的模型。我们发现,VFNET模型和一个阶段模型集合可以在CAD管道中互换使用。 结果:对122个测试T2 MRI体积的实验表明,VFNET每体积以4个假阳性(FP)为51.1%的MAP和78.7%的召回率,而单级模型集成的地图为52.3%,敏感性为4fp,敏感性为78.7%。 结论:我们的贡献是一种CAD管道,检测到T2 MRI体积中的LN,从而使$ \ sim $ \ sim的灵敏度提高了$ \ sim $ 14点比当前的SOTA检测方法(4 fp时的灵敏度为78.7%,在4 fp,而64.6%的敏感性为5 fp,以每卷5 fp为5 fp)。

Purpose: Identification of abdominal Lymph Nodes (LN) that are suspicious for metastasis in T2 Magnetic Resonance Imaging (MRI) scans is critical for staging of lymphoproliferative diseases. Prior work on LN detection has been limited to specific anatomical regions of the body (pelvis, rectum) in single MR slices. Therefore, the development of a universal approach to detect LN in full T2 MRI volumes is highly desirable. Methods: In this study, a Computer Aided Detection (CAD) pipeline to universally identify abdominal LN in volumetric T2 MRI using neural networks is proposed. First, we trained various neural network models for detecting LN: Faster RCNN with and without Hard Negative Example Mining (HNEM), FCOS, FoveaBox, VFNet, and Detection Transformer (DETR). Next, we show that the state-of-the-art (SOTA) VFNet model with Adaptive Training Sample Selection (ATSS) outperforms Faster RCNN with HNEM. Finally, we ensembled models that surpassed a 45% mAP threshold. We found that the VFNet model and one-stage model ensemble can be interchangeably used in the CAD pipeline. Results: Experiments on 122 test T2 MRI volumes revealed that VFNet achieved a 51.1% mAP and 78.7% recall at 4 false positives (FP) per volume, while the one-stage model ensemble achieved a mAP of 52.3% and sensitivity of 78.7% at 4FP. Conclusion: Our contribution is a CAD pipeline that detects LN in T2 MRI volumes, resulting in a sensitivity improvement of $\sim$14 points over the current SOTA method for LN detection (sensitivity of 78.7% at 4 FP vs. 64.6% at 5 FP per volume).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源