论文标题

LQG控制的时间不变的前缀编码

Time-invariant Prefix Coding for LQG Control

论文作者

Cuvelier, Travis C., Tanaka, Takashi, Heath Jr, Robert W.

论文摘要

由控制沟通约束的控制,在这项工作中,我们为线性 - 季度高斯(LQG)控件开发了一个时间不变的数据压缩体系结构,并使用最小比特率前缀无反馈。对于任何固定控制性能,我们提出的方法几乎可以在预期的码字长度上实现已知的定向信息(DI)下限。我们完善了经典可实现方法的分析,该方法需要通过时间变化的无损源代码来编码量化的植物测量值。我们证明描述量化的随机变量的序列具有限制分布,并且可以使用针对此分布进行优化的固定源代码编码,而无需添加时间 - 杂质冗余。我们的结果是分析系统的长期随机行为,并允许我们保证时间平均的代码字长度(与预期长度相反)几乎肯定在最小DI的几个位置。据我们所知,这种不变的可实现性结果是文献中的第一个。 最初发表的补充材料版本包括一个证明,其中包含错误的错误。此更新的预印本纠正了此错误,该错误最初出现在引理A.7下。

Motivated by control with communication constraints, in this work we develop a time-invariant data compression architecture for linear-quadratic-Gaussian (LQG) control with minimum bitrate prefix-free feedback. For any fixed control performance, the approach we propose nearly achieves known directed information (DI) lower bounds on the time-average expected codeword length. We refine the analysis of a classical achievability approach, which required quantized plant measurements to be encoded via a time-varying lossless source code. We prove that the sequence of random variables describing the quantizations has a limiting distribution and that the quantizations may be encoded with a fixed source code optimized for this distribution without added time-asymptotic redundancy. Our result follows from analyzing the long-term stochastic behavior of the system, and permits us to additionally guarantee that the time-average codeword length (as opposed to expected length) is almost surely within a few bits of the minimum DI. To our knowledge, this time-invariant achievability result is the first in the literature. The originally published version of the supplementary material included a proof that contained an error that turned out to be inconsequential. This updated preprint corrects this error, which originally appeared under Lemma A.7.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源