论文标题

弯曲的方形管道中三维湍流边界层的壁模型大涡模拟

Wall-modeled large-eddy simulation of three-dimensional turbulent boundary layer in a bent square duct

论文作者

Hu, Xiaohan, Hayat, Imran, Park, George Ilhwan

论文摘要

我们在弯曲方形管道的地板上进行了压力驱动的三维湍流边界层(3DTBL)的壁模型LE(WMLE),以研究三种广泛使用的壁模型的预测能力,即简单的平衡应力模型,一个积分的非平衡模型和无限制模型。将数值结果与Schwarz和Bradshaw的实验进行了比较(J. Fluid Mech。(1994),第272卷,第183-210页)。尽管三个壁模型预测的壁应力大小是可比的,但PDE非平衡壁模型对壁压力方向的预测基本上更准确,然后是积分非等级壁模型。显示出壁模型的壁应力方向与平衡应力部分具有可分离的贡献,并具有综合的非平衡效应,在壁模型之间,后者的建模方式有所不同。壁模型溶液的三角图揭示了壁模型的不同功能,代表了沿壁法线方向的流动方向变化。相反,外部LES解决方案不受所使用的壁模型类型的影响,从而在所有壁模型中对外部区域的平均和湍流统计数据几乎相同。这是通过产生平均三维性的涡度动力学和无粘性偏度机制来解释的。最后,外层中的LES溶液用于研究湍流的各向异性。与规范的2D壁湍流相反,雷诺应力各向异性表现出强烈的非单调行为,壁距离增加。

We conduct wall-modeled LES (WMLES) of a pressure-driven three-dimensional turbulent boundary layer (3DTBL) developing on the floor of a bent square duct to investigate the predictive capability of three widely used wall models, namely, a simple equilibrium stress model, an integral nonequilibrium model, and a PDE nonequilibrium model. The numerical results are compared with the experiment of Schwarz and Bradshaw (J. Fluid Mech. (1994), vol. 272, pp. 183-210). While the wall-stress magnitudes predicted by the three wall models are comparable, the PDE nonequilibrium wall model produces a substantially more accurate prediction of the wall-stress direction, followed by the integral nonequilibrium wall model. The wall-stress direction from the wall models is shown to have separable contributions from the equilibrium stress part and the integrated nonequilibrium effects, where how the latter is modeled differs among the wall models. The triangular plot of the wall-model solution reveals different capabilities of the wall models in representing variation of flow direction along the wall-normal direction. On the contrary, the outer LES solution is unaffected by the type of wall model used, resulting in nearly identical predictions of the mean and turbulent statistics in the outer region for all the wall models. This is explained by the vorticity dynamics and the inviscid skewing mechanism of generating the mean three-dimensionality. Finally, the LES solution in the outer layer is used to study the anisotropy of turbulence. In contrast to the canonical 2D wall turbulence, the Reynolds stress anisotropy exhibit strong non-monotonic behavior with increasing wall distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源