论文标题
溴化物混合到rbpbi $ _3 $对结构,电子和光学特性的影响的AB-Initio研究
Ab-initio study of the effect of bromide mixing into RbPbI$_3$ on the structural, electronic and optical properties
论文作者
论文摘要
基于卤化物前壶的超高效率和具有成本效益的光伏技术为正在进行的光伏研究带来了一场革命,超过了科学界的期望。但是,结构稳定性是一个严重的问题,它阻碍了他们在设备级别的广泛集成。与卤化物混合在一起的组成工程已经成为解决此问题的有效方法,而不会损害设备效率。以下是溴化物混合原骨$ \ rm {{rbpb(i_ {1-x} br_x)_3}} $的结构,电子和光学特性(其中,$ \ rm {x} = 0.25 $,$ 0.50 $,$ 0.50 $,$ 0.50 $和0.75 $)是使用d mentory farkity farkity farkity farkity farkity farkity的。使用PBE(Perdew-Burke-ernzerhof)和TB-MBJ(Tran Blaha修改的Becke Johnson)潜力来计算状态的电子带和密度(DOS)。 $ \ rm {x} = 0.50 $的最低能量带盖为$ 2.288 $和$ 2.986 $ EV,分别使用PBE和TB-MBJ获得。相比之下,混合的溴化物相具有较小的有效质量,从而促进了通过混合卤化物的更好的载体运输。使用PBE,激子似乎是Mott-Wannier类型。但是,TB-MBJ预测,激子是$ \ rm {x} = 0.75 $的溴化物混合的Frenkel类型和用于所有其他研究中所有其他混合的Mott-Wannier类型。观察到光谱有限的最大效率(SLME)分别使用PBE和TB-MBJ分别为I和BR的均等混合物的最高价值$ 14.0 $ \%和$ 4.1 $ \%。计算出的属性与相似结构的报告数据一致。
The ultra-high efficiency and cost-effective photovoltaics based on halide preovskites have brought a revolution to ongoing photovoltaic research, surpassing the expectations of the scientific community. However, structural stability is a severe issue that hinders their wide-scale integration at the device level. Compositional engineering with the halide mixing has become an efficient way to deal with this issue without compromising device efficiency. Herein, the structural, electronic and optical properties of the bromide mixed orthorhombic $\rm{{RbPb(I_{1-x}Br_x)_3}}$ (where, $\rm{x}=0.25$, $0.50$ and $0.75$) are calculated using the density functional theory. The electronic bandstructure and density of states (DOS) are calculated using both PBE (Perdew-Burke-Ernzerhof) and TB-mBJ (Tran Blaha modified Becke Johnson) potential. The lowest energy bandgaps of $2.288$ and $2.986$ eV for bromide mixing of $\rm{x}=0.50$ are obtained using PBE and TB-mBJ, respectively. In contrast, the mixed bromide phases possess a smaller effective mass, facilitating a better carrier transport through the mixed halide. Using PBE, the excitons appear to be the Mott-Wannier type. However, the TB-mBJ predicts the exciton to be Frenkel type for bromide mixing of $\rm{x}=0.75$ and a Mott-Wannier type for all other mixing under study. The spectroscopic limited maximum efficiency (SLME) is observed to be at the highest values of $14.0$\% and $4.1$\% for the equal admixture of I and Br using PBE and TB-mBJ, respectively. The calculated properties are consistent with the reported data of the similar structures.