论文标题
在II型超新星中建模相互作用的签名:紫外线发射,高速功能,宽框特征
Modeling the signatures of interaction in Type II supernovae: UV emission, high-velocity features, broad-boxy profiles
论文作者
论文摘要
由于质量损失是大恒星中的一种基本现象,因此与偶尔材料(CSM)的相互作用在核心偏曲超新星(SNE)中应具有普遍性。除了在IIN型中通常遇到的极端CSM密度,程度或质量,我们研究了与质量损失率相互作用的多样化的长期辐射签名,这些散射率与质量损失率相对,最高为10 $^{ - 3} $ $ M _ {\ odot} $ yr $ yr $^$ yr $^{-1} $。由于这些CSM相对较差,并且在几个恒星半径以外的电子散射上具有光学薄弱,因此辐射流体动力学并不是必需的,并且可以将相互作用直接视为非局部热力学平衡辐射辐射传递问题中的附加电源。 CSM由于冲击爆发而积累的CSM在外喷射中形成了一个致密的外壳,并在光谱线中导致高速吸收特征,即使是可忽略不计的电击功率。除Balmer线外,此类功能还可能出现在NAID,HEI线路等。更强的互动增强了连续性通量(优先在紫外线中),消除了P-Cygni配置文件的吸收,增加了MGII $λλ$ $ $ $ $ 2795,2802 $ doublet,并为宽阔的Boxy Boxy H $ y $'$ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ aconcoundenconsonconcencon组合。外射流中电离的上升可能会淬灭一些线(例如,CAII近红外三重态)。相互作用功率优先出现在紫外线中,尤其是在以后的时间,将光学色转移到蓝色,但会适度增加光光度。在光学中使相互作用的相互作用很高似乎需要强大的热化和结块。紫外线范围包含必不可少的签名,这些签名提供了关键的限制,以推断死亡时核心偏移SN祖细胞的内部工作。
Because mass loss is a fundamental phenomenon in massive stars, interaction with circumstellar material (CSM) should be universal in core-collapse supernovae (SNe). Leaving aside the extreme CSM density, extent, or mass typically encountered in Type IIn SNe, we investigate the diverse long-term radiative signatures of interaction between a Type II SN ejecta and CSM corresponding to mass loss rates up to 10$^{-3}$ $M_{\odot}$ yr$^{-1}$. Because these CSM are relatively tenuous and optically-thin to electron-scattering beyond a few stellar radii, radiation hydrodynamics is not essential and one may treat the interaction directly as an additional power source in the non-local thermodynamic equilibrium radiative transfer problem. The CSM accumulated since shock breakout forms a dense shell in the outer ejecta and leads to high-velocity absorption features in spectral lines, even for negligible shock power. Besides Balmer lines, such features may appear in NaID, HeI lines etc. A stronger interaction strengthens the continuum flux (preferentially in the UV), quenches the absorption of P-Cygni profiles, boosts the MgII $λλ$ $2795,2802$ doublet, and fosters the production of a broad boxy H$α$ emission component. The rise in ionization in the outer ejecta may quench some lines (e.g., the CaII near-infrared triplet). The interaction power emerges preferentially in the UV, in particular at later times, shifting the optical color to the blue, but increasing modestly the optical luminosity. Strong thermalization and clumping seem to be required to make an interaction superluminous in the optical. The UV range contains essential signatures that provide critical constraints to infer the mass loss history and inner workings of core-collapse SN progenitors at death.