论文标题

物理学指导的神经网络,用于前馈控制:从一致的识别到馈电控制器设计

Physics-guided neural networks for feedforward control: From consistent identification to feedforward controller design

论文作者

Bolderman, Max, Lazar, Mircea, Butler, Hans

论文摘要

基于模型的前进馈控制可以改善运动系统的跟踪性能,前提是描述逆动力学的模型具有足够的精度。模型集,例如神经网络(NNS)和物理引导的神经网络(PGNN)通常被用作灵活的参数化,可以准确识别逆系统动力学。当前,这些(PG)NN用于直接识别逆动力学。但是,逆动力学的直接识别对训练数据中存在的噪声敏感,从而导致偏见的参数估计,从而限制了可实现的跟踪性能。为了进一步推动绩效,在执行识别时要考虑噪声至关重要。为了解决这个问题,本文提出了使用(pg)NNS中的向前向系统识别的使用。之后,提出了两种方法,用于倒置PGNN来设计用于高精度运动控制的前馈控制器。开发的方法在现实生活中的工业线性电动机上进行了验证,在现实生活中,它在直接识别方面显示了跟踪性能的显着改善。

Model-based feedforward control improves tracking performance of motion systems, provided that the model describing the inverse dynamics is of sufficient accuracy. Model sets, such as neural networks (NNs) and physics-guided neural networks (PGNNs) are typically used as flexible parametrizations that enable accurate identification of the inverse system dynamics. Currently, these (PG)NNs are used to identify the inverse dynamics directly. However, direct identification of the inverse dynamics is sensitive to noise that is present in the training data, and thereby results in biased parameter estimates which limit the achievable tracking performance. In order to push performance further, it is therefore crucial to account for noise when performing the identification. To address this problem, this paper proposes the use of a forward system identification using (PG)NNs from noisy data. Afterwards, two methods are proposed for inverting PGNNs to design a feedforward controller for high-precision motion control. The developed methodology is validated on a real-life industrial linear motor, where it showed significant improvements in tracking performance with respect to the direct inverse identification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源