论文标题

通往嵌合体的孤独路线

Solitary routes to chimera states

论文作者

Schülen, Leonhard, Gerdes, Alexander, Wolfrum, Matthias, Zakharova, Anna

论文摘要

我们展示了在全球耦合的Fitzhugh-Nagumo振荡器系统中,孤立状态如何导致嵌合体状态的出现。通过对热力学极限中合适的还原系统的数值分叉分析,我们证明了孤立状态在从同步状态中浮出水面后如何在级联时期级联时变得混乱。随后,具有单一混沌振荡器的状态会引起越来越多的混乱振荡器数量的状态。在大型系统中,这些嵌合体显示了广泛的混乱。由于不同数量的不连贯振荡器,我们证明了许多此类混乱的吸引子与不同的Lyapunov尺寸的共存。

We show how solitary states in a system of globally coupled FitzHugh-Nagumo oscillators can lead to the emergence of chimera states. By a numerical bifurcation analysis of a suitable reduced system in the thermodynamic limit we demonstrate how solitary states, after emerging from the synchronous state, become chaotic in a period-doubling cascade. Subsequently, states with a single chaotic oscillator give rise to states with an increasing number of incoherent chaotic oscillators. In large systems, these chimera states show extensive chaos. We demonstrate the coexistence of many of such chaotic attractors with different Lyapunov dimensions, due to different numbers of incoherent oscillators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源