论文标题

深度页面兴趣网络在加强广告分配的增强学习中

Deep Page-Level Interest Network in Reinforcement Learning for Ads Allocation

论文作者

Liao, Guogang, Shi, Xiaowen, Wang, Ze, Wu, Xiaoxu, Zhang, Chuheng, Wang, Yongkang, Wang, Xingxing, Wang, Dong

论文摘要

广告和有机项目的混合列表通常显示在饲料中,以及如何分配有限的老虎机以最大化整体收入是一个关键问题。同时,对用户偏好使用历史行为进行建模对于建议和广告(例如CTR预测和广告分配)至关重要。大多数用于用户行为建模的作品仅建模用户的历史点级正反馈(即点击),该反馈忽略了反馈和其他类型的反馈信息的页面级信息。为此,我们建议深入的页面级兴趣网络(DPIN),以建模页面级用户偏好并利用多种类型的反馈。具体来说,我们将四种不同类型的页面级反馈作为输入引入,并通过多通道交互模块捕获不同接收场在不同接受字段的项目布置的用户偏好。通过Meituan食品交付平台上的大量离线和在线实验,我们证明DPIN可以有效地对页面级用户的偏好进行建模并增加平台的收入。

A mixed list of ads and organic items is usually displayed in feed and how to allocate the limited slots to maximize the overall revenue is a key problem. Meanwhile, modeling user preference with historical behavior is essential in recommendation and advertising (e.g., CTR prediction and ads allocation). Most previous works for user behavior modeling only model user's historical point-level positive feedback (i.e., click), which neglect the page-level information of feedback and other types of feedback. To this end, we propose Deep Page-level Interest Network (DPIN) to model the page-level user preference and exploit multiple types of feedback. Specifically, we introduce four different types of page-level feedback as input, and capture user preference for item arrangement under different receptive fields through the multi-channel interaction module. Through extensive offline and online experiments on Meituan food delivery platform, we demonstrate that DPIN can effectively model the page-level user preference and increase the revenue for the platform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源