论文标题

通过神经网分类器面对识别

Face identification by means of a neural net classifier

论文作者

Espinosa-Duro, Virginia, Faundez-Zanuy, Marcos

论文摘要

本文描述了一种新颖的面部识别方法,该方法将特征性理论与神经网络结合在一起。我们使用特征法的方法来降低输入图像的维度,以及执行识别过程的神经网络分类器。提出的方法识别面部表达,面部细节和照明条件的变化。已经达到了超过87%的识别率,而Turk和Pentland的经典方法则达到75.5%。

This paper describes a novel face identification method that combines the eigenfaces theory with the Neural Nets. We use the eigenfaces methodology in order to reduce the dimensionality of the input image, and a neural net classifier that performs the identification process. The method presented recognizes faces in the presence of variations in facial expression, facial details and lighting conditions. A recognition rate of more than 87% has been achieved, while the classical method of Turk and Pentland achieves a 75.5%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源