论文标题

在富士式指数上,用于具有空间强迫术语的耐铁方程式

On the Fujita exponent for a Hardy-Hénon equation with a spatial-temporal forcing term

论文作者

Majdoub, Mohamed

论文摘要

这项工作的目的是分析较高的抛物面半线性方程的解决方案\ [u_t+( - Δ) (x,t)\in\mathbb{R}^{N}\times(0,\infty), \] where $d\in (0,1)\cup \mathbb{N}$, $p>1$, $-α\in(0,\min(2d,N))$ or $α\geq 0$ and $ζ$ as well as ${\mathbf W} $是适合给定功能。给定$ p \ geq \ frac {n-2dσ+α} {n-2dσ-2d} $和设置$ p_c = \ frac {n(p-1)} {2d+α} $,$ \ ell = \ ell = \ frac {n p_c} l^{p_c,\ infty}(\ mathbb {r}^n)$和$ \ textbf {w} \ in l^{\ ell,\ eld,\ infty}(\ mathbb {r}^n)$具有小规范,其中有一个独特的全球解决方案。和$ n> 2d $在空间中$ c_ {b}([[0,\ infty); l^{p_c,\ infty}(\ mathbb {r}^n))$。作为一种副产品,小的Lebesgue数据全球存在随之而来,尤其是无条件的独特性在$ c_ {b}([0,\ infty); l^{p_c}(\ mathbb {r}^n)$提供的$ p \ in(\ frac {n+α+α} {n n-n-n-n-n-n-n-n); l^{p_c}(\ mathbb {r}^n)$如果要么( - \ infty,0] $和$ p \ in(1,\ frac {n-2dm+α} {n-2dm+α} {n-2dm-2d})$或$ m> 0 $ and $ p> 1 $ and $ p> 1 $ were $ζ(t)在附加条件下如果$ -1 <σ<0 $,则否则无限。

The purpose of this work is to analyze the wellposedness and the blow-up of solutions of the higher-order parabolic semilinear equation \[ u_t+(-Δ)^{d}u=|x|^α|u|^{p}+ζ(t){\mathbf w}(x) \ \quad\mbox{for } (x,t)\in\mathbb{R}^{N}\times(0,\infty), \] where $d\in (0,1)\cup \mathbb{N}$, $p>1$, $-α\in(0,\min(2d,N))$ or $α\geq 0$ and $ζ$ as well as ${\mathbf w}$ are suitable given functions. Given $p\geq \frac{N-2dσ+α}{N-2dσ-2d}$ and setting $p_c=\frac{N(p-1)}{2d+α}$, $\ell=\frac{N p_c}{N+2(σ+1)d p_c}$, we prove that for any data $u_0\in L^{p_c,\infty}(\mathbb{R}^N)$ and $\textbf{w}\in L^{\ell,\infty}(\mathbb{R}^N)$ with small norms there exists a unique global-in-time solution under the hypotheses $ζ(t)=t^σ$, $σ\in (-1,0)$ and $N>2d$ in the space $C_{b}([0,\infty);L^{p_c,\infty}(\mathbb{R}^N))$. As a by-product, small Lebesgue data global existence follows and in particular, unconditional uniqueness holds in $C_{b}([0,\infty);L^{p_c}(\mathbb{R}^N))$ provided $p\in (\frac{N+α}{N-2d},\infty)$. If either $m\in (-\infty,0]$ and $p\in (1,\frac{N-2dm+α}{N-2dm-2d})$ or $m>0$ and $p>1$ where $ζ(t)=O(t^m)$, $t\rightarrow\infty$ ($m\in \mathbb{R}$), then all solutions blow up under the additional condition $\int_{\mathbb{R}^N}\textbf{w}(x)\,dx>0$. As a consequence, we deduce that the corresponding Fujita critical exponent is a function of $σ$ and reads $p_{F}(σ)=\frac{N-2dσ+α}{N-2dσ-2d}$ if $-1<σ<0$ and infinity otherwise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源