论文标题
与顶点操作员代数和融合规则相关的双模型
Bimodues associated to twisted modules of vertex operator algebras and fusion rules
论文作者
论文摘要
令$ v $为顶点操作员代数,$ t \ in \ mathbb {n} $和$(m^k,y_ {m^k})$ for $ k = 1,2,3 $ be $ g_k $ twisted模块,$ g_k $在$ g_k $的情况$ g_3 = g_1g_2 $。假设$ i(\ cdot,z)$是类型$({array} {C} m^{3} m^{1} m^{1} m^{2} {2} {array})$的交织操作员。我们构造了$ a_ {g_1g_2}(v)$ - $ a_ {g_2}(v)$ - bimodule $ a_ {g_1g_2,g_2}(m^1)$,这决定了$ m^2 $从$ m^2 $ to $ m^3 $的$ m^2 $的$ m^1 $的操作,并探索$ m^3 $的规则。
Let $V$ be a vertex operator algebra, $T\in \mathbb{N}$ and $(M^k, Y_{M^k})$ for $k=1, 2, 3$ be a $g_k$-twisted module, where $g_k$ are commuting automorphisms of $V$ such that $g_k^T=1$ for $k=1, 2, 3$ and $g_3=g_1g_2$. Suppose $I(\cdot, z)$ is an intertwining operator of type $({array}{c} M^{3} M^{1} M^{2} {array}) $. We construct an $A_{g_1g_2}(V)$-$A_{g_2}(V)$-bimodule $A_{g_1g_2, g_2}(M^1)$ which determines the action of $M^1$ from the bottom level of $M^2$ to the bottom level of $M^3$ and explored its connections with fusion rules.