论文标题

倒置的HGTE/CDTE和INAS/GASB量子井中的量子自旋大厅和量子厅状态的磁转移特性

Magnetotransport properties of the Quantum Spin Hall and Quantum Hall states in an inverted HgTe/CdTe and InAs/GaSb quantum wells

论文作者

Mawrie, Alestin

论文摘要

在INAS/GASB和HGTE/CDTE量子井的倒置带中发现的量子自旋大厅(QSH)状态将它们分类为拓扑绝缘子的非常出色的候选者。在存在磁场的情况下,这些QSH状态持续到等于临界场的磁场,除此之外,边缘状态将由正常的量子霍尔(QH)状态组成。我们提供了这个关键领域的表达,该临界领域与以前的一些文献一致。关键场将频谱分为两种类型的量子状态,\ textit {viz}。 ,量子自旋大厅(QSH)和量子厅(QH)。我们介绍了基于伯尼维格·霍斯 - Zhang Hamiltonian的磁转运性质的理论研究,该特性描述了这些QSH状态。我们的霍尔电导率结果显示了这两个不同拓扑区域的不同响应。在低费米能水平周围,该系统在QH区域具有高霍尔电导率,而在QSH区域中的占主导地位较低。因此,我们的霍尔电导率结果有助于区分给定量子的类型拓扑阶段。

The quantum spin Hall (QSH) states discovered in an inverted band of InAs/GaSb and HgTe/CdTe quantum wells categorize them among the very superior candidates for topological insulators. In the presence of a magnetic field, these QSH states persist up to a magnetic field equal to the critical field, beyond which the edge states would consist of normal quantum Hall (QH) states. We provide the expression of this critical field which is found consistent with some previous literature. The critical field partitioned the spectrum into two types of quantum states, \textit{viz}. , the Quantum spin Hall (QSH) and Quantum Hall (QH) states. We present a theoretical study of the magnetotransport properties based on the Bernevig-Hughes-Zhang Hamiltonian that describes these QSH states. Our results of the Hall conductivity show the different responses at these two different topological regions. Around the low Fermi energy level, the system has a high Hall conductivity in the QH region, while the same is less dominant in the QSH region. Our results of the Hall conductivity thus help differentiate the type topological phase of the given quantum well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源