论文标题

环状独立性:布尔和单调

Cyclic independence: Boolean and monotone

论文作者

Arizmendi, Octavio, Hasebe, Takahiro, Lehner, Franz

论文摘要

本文介绍了最初在随机矩阵的背景下出现的环状超声酮独立性的修改版本,还引入了其自然类比,称为环状树状树立独立性。我们研究了卷积的公式,限制了独立随机变量的总和的定理,并将相对于环状树树卷积进行了无限划分的分布。最后,我们为迭代的恒星产品的邻接矩阵和图形梳子产物的邻接矩阵的特征值提供了应用。

The present paper introduces a modified version of cyclic-monotone independence which originally arose in the context of random matrices, and also introduces its natural analogy called cyclic-Boolean independence. We investigate formulas for convolutions, limit theorems for sums of independent random variables, and also classify infinitely divisible distributions with respect to cyclic-Boolean convolution. Finally, we provide applications to the eigenvalues of the adjacency matrices of iterated star products of graphs and also iterated comb products of graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源