论文标题

Kepler-1656b的极端怪异:温柔巨人的签名

Kepler-1656b's Extreme Eccentricity: Signature of a Gentle Giant

论文作者

Angelo, Isabel, Naoz, Smadar, Petigura, Erik, MacDougall, Mason, Stephan, Alexander, Isaacson, Howard, Howard, Andrew W.

论文摘要

高度偏心的轨道是相对于太阳系的主要惊喜之一,表明富裕而动荡的动力学历史。一个特别感兴趣的系统是Kepler-1656,该系统托有一个偏心率为0.8的jovian行星。足够的偏心轨道将由于轨道通过术期间的轨道能量耗散而在半高轴上收缩。在这里,我们的目标是评估Kepler-1656b目前是否正在进行如此高的居民迁移,并进一步了解系统的起源和体系结构。我们用$ m _ {\ rm c} = 0.40 \ pm 0.09m _ {\ rm jup} $和p $ _ {\ rm c} = 1919 \ pm 27 \,$ days确认系统中的第二个行星。我们在存在C的存在下模拟了行星B的动态演变,并为系统(例如潮汐迁移和吞噬)找到了各种可能的结果。该系统与行星B的原位动力学起源一致,然后是随后的偏心Kozai Lidov(EKL)扰动,这些扰动激发了Kepler-1656b的偏心率,即不引发潮汐迁移。因此,尽管具有很高的偏心率,但我们没有发现行星B是或已经通过高分子通道迁移的证据。最后,我们根据我们的模拟结果预测,相对于内行星轨道的近乎垂直构型将相互倾斜,并对内行星的旋转轨道角度进行可观察的预测。我们的方法可以应用于其他偏心或潮汐锁定的行星,以限制其起源,轨道配置和潜在伴侣的特性。

Highly eccentric orbits are one of the major surprises of exoplanets relative to the Solar System and indicate rich and tumultuous dynamical histories. One system of particular interest is Kepler-1656, which hosts a sub-Jovian planet with an eccentricity of 0.8. Sufficiently eccentric orbits will shrink in semi-major axis due to tidal dissipation of orbital energy during periastron passage. Here our goal was to assess whether Kepler-1656b is currently undergoing such high-eccentricity migration, and to further understand the system's origins and architecture. We confirm a second planet in the system with $M_{\rm c}= 0.40 \pm 0.09M_{\rm jup}$ and P$_{\rm c}= 1919\pm 27\,$days. We simulated the dynamical evolution of planet b in the presence of planet c and find a variety of possible outcomes for the system, such as tidal migration and engulfment. The system is consistent with an in situ dynamical origin of planet b followed by subsequent Eccentric Kozai Lidov (EKL) perturbations that excite Kepler-1656b's eccentricity gently, i.e. without initiating tidal migration. Thus, despite its high eccentricity, we find no evidence that planet b is or has migrated through the high-eccentricity channel. Finally, we predict the outer orbit to be mutually inclined in a nearly perpendicular configuration with respect to the inner planet orbit based on the outcomes of our simulations, and make observable predictions for the inner planet's spin-orbit angle. Our methodology can be applied to other eccentric or tidally locked planets to constrain their origins, orbital configurations and properties of a potential companion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源