论文标题

R2L:将神经辐射场蒸馏到神经光场,以提高新型视图合成

R2L: Distilling Neural Radiance Field to Neural Light Field for Efficient Novel View Synthesis

论文作者

Wang, Huan, Ren, Jian, Huang, Zeng, Olszewski, Kyle, Chai, Menglei, Fu, Yun, Tulyakov, Sergey

论文摘要

对神经辐射场(NERF)的最新研究爆炸表明,用神经网络代表复杂场景具有令人鼓舞的潜力。 NERF的一个主要缺点是它的推理时间:渲染单像素需要数百次查询NERF网络。为了解决它,现有的努力主要试图减少所需的采样点的数量。但是,迭代采样的问题仍然存在。另一方面,神经光场(NELF)在新型视图合成中对NERF提出了更直接的表示形式 - 像素的渲染相当于一个单一的正向通行,而无需射线建设。在这项工作中,我们提出了一个深层剩余的MLP网络(88层),以有效地学习光场。我们展示了成功学习这种深度NELF网络的关键,就是拥有足够的数据,我们通过数据蒸馏将知识从预训练的NERF模型转移。在合成和现实世界场景上进行的广泛实验表明,我们方法的优点比其他对应算法的优点。在合成场景中,我们实现了26-35倍的拖鞋(每个相机射线)和28-31倍的运行时加速,同时提供了比NERF的呈现质量(1.4-2.8 dB的平均PSNR改善),而没有任何定制的并行性要求。

Recent research explosion on Neural Radiance Field (NeRF) shows the encouraging potential to represent complex scenes with neural networks. One major drawback of NeRF is its prohibitive inference time: Rendering a single pixel requires querying the NeRF network hundreds of times. To resolve it, existing efforts mainly attempt to reduce the number of required sampled points. However, the problem of iterative sampling still exists. On the other hand, Neural Light Field (NeLF) presents a more straightforward representation over NeRF in novel view synthesis -- the rendering of a pixel amounts to one single forward pass without ray-marching. In this work, we present a deep residual MLP network (88 layers) to effectively learn the light field. We show the key to successfully learning such a deep NeLF network is to have sufficient data, for which we transfer the knowledge from a pre-trained NeRF model via data distillation. Extensive experiments on both synthetic and real-world scenes show the merits of our method over other counterpart algorithms. On the synthetic scenes, we achieve 26-35x FLOPs reduction (per camera ray) and 28-31x runtime speedup, meanwhile delivering significantly better (1.4-2.8 dB average PSNR improvement) rendering quality than NeRF without any customized parallelism requirement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源