论文标题
基于边缘智能的多源数据处理和融合方法,
Multi-source data processing and fusion method for power distribution internet of things based on edge intelligence
论文作者
论文摘要
随着能源互联网策略的快速发展,功率分销互联网(PD-iot)中的传感器数量已大大增加。在本文中,提出了基于边缘智能的PD-IOT多源数据处理和融合方法,以解决混淆存储和多源异构分布数据的融合计算性能的问题。首先,设计了基于边缘智能终端的PD-IOT多源数据处理和融合体系结构。其次,要以数量级和数量级来实现分布网络中各种传感器数据源的均匀转换。通过引入Box-Cox变换以在ZScore归一化过程中改善数据偏移问题,提出了一种基于Box-Cox变换ZScore的分发网络的多源异质数据处理方法。然后,基于PCA算法在数据源融合中的DS推理方法的冲突现象是最佳处理的。构建了基于DS推断和冲突优化的多源数据融合模型,以确保从不同域中有效融合分布数据源。最后,通过对中国区域分销网络中IEEE39节点系统的实验分析来验证所提出方法的有效性。
With the rapid advancement of the Energy Internet strategy, the number of sensors within the Power Distribution Internet of Things (PD-IoT) has increased dramatically. In this paper, an edge intelligence-based PD-IoT multi-source data processing and fusion method is proposed to solve the problems of confusing storage and insufficient fusion computing performance of multi-source heterogeneous distribution data. First, a PD-IoT multi-source data processing and fusion architecture based on edge smart terminals is designed. Second, to realize the uniform conversion of various sensor data sources in the distribution network in terms of magnitude and order of magnitude. By introducing the Box-Cox transform to improve the data offset problem in the Zscore normalization process, a multi-source heterogeneous data processing method for distribution networks based on the Box-Cox transform Zscore is proposed. Then, the conflicting phenomena of DS inference methods in data source fusion are optimally handled based on the PCA algorithm. A multi-source data fusion model based on DS inference with conflict optimization is constructed to ensure the effective fusion of distribution data sources from different domains. Finally, the effectiveness of the proposed method is verified by an experimental analysis of an IEEE39 node system in a regional distribution network in China.