论文标题

扭曲的组戒指的单位及其与古典戒指的相关性

Units of twisted group rings and their correlations to classical group rings

论文作者

Janssens, Geoffrey, Jespers, Eric, Schnabel, Ofir

论文摘要

本文围绕从其积分组环$ \ mathbb {z} g $中提取有限组$ g $的经典问题。通过描述有限组的单位组$ \ mathcal {u}(\ Mathbb {z} g)$来考虑此问题。由于$ 90S $,已知几个众所周知的通用构造可以生成$ \ Mathcal {u}中的有限索引子组(\ Mathbb {Z} g)$,如果$ \ MATHBB {q} g $没有所谓的特殊简单的表皮图像,例如。 $ M_2(\ Mathbb {Q})$。但是,在后一种简单图像的存在下,找到{\ it it iten intic}构造是一个主要的开放问题。在本文中,我们获得了这种单位的通用结构。此外,这种新结构还展示了新的属性,例如提供一般的自由级别级别。作为一个应用程序,我们对几个类别的几个类别的猜想和Abelianisation $ \ Mathcal {u}(\ Mathbb {Z} g)^ab} $的定期元素进行积极回答。为了获得所有这些,我们调查了一个集体$ g $的集体环$rγ$的某些普通亚组$ n $的扩展名$γ$,而不是一个$ g $。更确切地说,我们在分数字段$ f $ r $ $ f $ $ r $的(扭曲)组代数的直接总和分解中,在各种扭曲的组环上,$ g $在$ f $的有限扩展上。此外,还获得了有关相关预测的内核和凝聚力的具体信息。在此过程中,我们还通过扭曲的组环开始了扭曲组环和$ \ Mathcal {u}(rγ)$的单位组的调查。

This paper is centered around the classical problem of extracting properties of a finite group $G$ from the ring isomorphism class of its integral group ring $\mathbb{Z} G$. This problem is considered via describing the unit group $\mathcal{U}( \mathbb{Z} G)$ generically for a finite group. Since the $`90s$ several well known generic constructions of units are known to generate a subgroup of finite index in $\mathcal{U}(\mathbb{Z } G)$ if $\mathbb{Q} G$ does not have so-called exceptional simple epimorphic images, e.g. $M_2 (\mathbb{Q})$. However it remained a major open problem to find a {\it generic} construction under the presence of the latter type of simple images. In this article we obtain such generic construction of units. Moreover, this new construction also exhibits new properties, such as providing generically free subgroups of large rank. As an application we answer positively for several classes of groups recent conjectures on the rank and the periodic elements of the abelianisation $\mathcal{U}(\mathbb{Z} G)^{ab}$. To obtain all this, we investigate the group ring $R Γ$ of an extension $Γ$ of some normal subgroup $N$ by a group $G$, over a domain $R$. More precisely, we obtain a direct sum decomposition of the (twisted) group algebra of $Γ$ over the fraction field $F$ of $R$ in terms of various twisted group rings of $G$ over finite extensions of $F$. Furthermore, concrete information on the kernel and cokernel of the associated projections is obtained. Along the way we also launch the investigations of the unit group of twisted group rings and of $\mathcal{U}( RΓ)$ via twisted group rings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源