论文标题

SIMVQA:探索视觉问题的模拟环境回答

SimVQA: Exploring Simulated Environments for Visual Question Answering

论文作者

Cascante-Bonilla, Paola, Wu, Hui, Wang, Letao, Feris, Rogerio, Ordonez, Vicente

论文摘要

VQA上的现有工作探索了数据扩展,以通过扰动数据集中的图像或修改现有问题和答案来实现更好的概括。尽管这些方法表现出良好的性能,但问题和答案的多样性受到可用图像集的约束。在这项工作中,我们使用合成计算机生成的数据探索以充分控制视觉和语言空间,从而使我们能够提供更多不同的场景。我们量化了合成数据在实际VQA基准中的效果,并在多大程度上产生的结果将其推广到真实数据。通过利用3D和物理仿真平台,我们提供了一条管道来生成合成数据,以扩展和替换特定于类型的问题和答案,而不会冒着可能在真实图像中可能存在的敏感或个人数据暴露的风险。我们提供了全面的分析,同时扩展了用于VQA的现有超现实数据集。我们还提出了功能交换(F-SWAP) - 在训练过程中,我们随机切换对象级特征,以使VQA模型更加不变。我们表明,F-SWAP有效地增强了当前现有的真实图像的VQA数据集,而不会损害回答数据集中现有问题的准确性。

Existing work on VQA explores data augmentation to achieve better generalization by perturbing the images in the dataset or modifying the existing questions and answers. While these methods exhibit good performance, the diversity of the questions and answers are constrained by the available image set. In this work we explore using synthetic computer-generated data to fully control the visual and language space, allowing us to provide more diverse scenarios. We quantify the effect of synthetic data in real-world VQA benchmarks and to which extent it produces results that generalize to real data. By exploiting 3D and physics simulation platforms, we provide a pipeline to generate synthetic data to expand and replace type-specific questions and answers without risking the exposure of sensitive or personal data that might be present in real images. We offer a comprehensive analysis while expanding existing hyper-realistic datasets to be used for VQA. We also propose Feature Swapping (F-SWAP) -- where we randomly switch object-level features during training to make a VQA model more domain invariant. We show that F-SWAP is effective for enhancing a currently existing VQA dataset of real images without compromising on the accuracy to answer existing questions in the dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源