论文标题

FreeNESS和$ S $ - 理性Möbiusgroups

Freeness and $S$-arithmeticity of rational Möbius groups

论文作者

Detinko, A. S., Flannery, D. L., Hulpke, A.

论文摘要

我们针对经典问题启动了一种新的计算方法:认证($ 2 $ - 生成剂,抛物线)Möbius子组的$ \ mathrm {sl}(2,\ mathbb {q})$。使用的主要工具是Zariski密集组的算法和算法,用于计算$ \ Mathrm {sl}(2,r)$的演示文稿,用于本地化$ r = \ Mathbb {Z} [\ frac {\ frac {1} {1} {B} {B} {B} {B}]我们证明,Möbius子组$ g $是通过证明其在相关$ \ Mathrm {SL}(2,r)$中具有有限索引来免费的。有关$ g $结构的更多信息;例如,我们计算包含$ g $的$ \ mathrm {sl}(2,r)$中的有限索引的最小亚组。

We initiate a new, computational approach to a classical problem: certifying non-freeness of ($2$-generator, parabolic) Möbius subgroups of $\mathrm{SL}(2,\mathbb{Q})$. The main tools used are algorithms for Zariski dense groups and algorithms to compute a presentation of $\mathrm{SL}(2, R)$ for a localization $R= \mathbb{Z}[\frac{1}{b}]$ of $\mathbb{Z}$. We prove that a Möbius subgroup $G$ is not free by showing that it has finite index in the relevant $\mathrm{SL}(2, R)$. Further information about the structure of $G$ is obtained; for example, we compute the minimal subgroup of finite index in $\mathrm{SL}(2,R)$ that contains $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源