论文标题
Si和GE量子点中完全可调的纵向自旋相互作用
Fully tunable longitudinal spin-photon interactions in Si and Ge quantum dots
论文作者
论文摘要
硅和锗量子点中的旋转量器是量子计算的有前途的平台,但是在微米距离上纠缠的旋转Qubits仍然是一个关键的挑战。电流原型体系结构最大程度地提高了量子位和微波谐振器之间的横向相互作用,在该旋转状态被几乎谐振光子翻转。但是,这些相互作用会在量子位上引起反作用,从而产生不可避免的残留量子Qubit耦合,并显着影响栅极的保真度。令人惊讶的是,当自旋光子相互作用是纵向和光子夫妇到量子阶段时,残留耦合消失了。我们表明,大型纵向相互作用在最先进的孔旋转矩形中自然出现。这些相互作用是完全可调的,可以通过外部振荡电场对参数调节。我们提出了现实的协议来衡量这些相互作用,并实施快速,高保真的两分纠缠大门。这些协议在高温下也有效,为实施大规模量子处理器铺平了道路。
Spin qubits in silicon and germanium quantum dots are promising platforms for quantum computing, but entangling spin qubits over micrometer distances remains a critical challenge. Current prototypical architectures maximize transversal interactions between qubits and microwave resonators, where the spin state is flipped by nearly resonant photons. However, these interactions cause back-action on the qubit, that yield unavoidable residual qubit-qubit couplings and significantly affect the gate fidelity. Strikingly, residual couplings vanish when spin-photon interactions are longitudinal and photons couple to the phase of the qubit. We show that large longitudinal interactions emerge naturally in state-of-the-art hole spin qubits. These interactions are fully tunable and can be parametrically modulated by external oscillating electric fields. We propose realistic protocols to measure these interactions and to implement fast and high-fidelity two-qubit entangling gates. These protocols work also at high temperatures, paving the way towards the implementation of large-scale quantum processors.