论文标题

在计算成像中集成物理和学识的模型的插件方法

Plug-and-Play Methods for Integrating Physical and Learned Models in Computational Imaging

论文作者

Kamilov, Ulugbek S., Bouman, Charles A., Buzzard, Gregery T., Wohlberg, Brendt

论文摘要

插入式先验(PNP)是通过集成物理模型和学习模型来解决计算成像问题的最广泛使用的框架之一。 PNP利用高保真物理传感器模型和强大的机器学习方法来先验对数据建模,以提供最新的重建算法。 PNP算法在最大程度地降低数据限制项以促进数据一致性和以图像Denoiser的形式施加学习的正规器之间进行交替。 PNP算法的最新高度应用程序包括生物微观镜检查,计算机断层扫描,磁共振成像和关节Ptycho-Tomography。本文通过追踪其根源,描述其主要变化,总结主要结果并讨论计算成像中的应用,对PNP进行了统一和原则的评论。我们还通过讨论对与PNP算法相关的问题的均衡方程进行讨论的最新结果来指向进一步发展的道路。

Plug-and-Play Priors (PnP) is one of the most widely-used frameworks for solving computational imaging problems through the integration of physical models and learned models. PnP leverages high-fidelity physical sensor models and powerful machine learning methods for prior modeling of data to provide state-of-the-art reconstruction algorithms. PnP algorithms alternate between minimizing a data-fidelity term to promote data consistency and imposing a learned regularizer in the form of an image denoiser. Recent highly-successful applications of PnP algorithms include bio-microscopy, computerized tomography, magnetic resonance imaging, and joint ptycho-tomography. This article presents a unified and principled review of PnP by tracing its roots, describing its major variations, summarizing main results, and discussing applications in computational imaging. We also point the way towards further developments by discussing recent results on equilibrium equations that formulate the problem associated with PnP algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源