论文标题
真实空间动力学的量子模拟
Quantum simulation of real-space dynamics
论文作者
论文摘要
量子模拟是量子计算机的突出应用。虽然先前在模拟有限维系统上进行了广泛的工作,但对实时动力学的量子算法知之甚少。我们对此类算法进行系统研究。特别是,我们表明,可以使用$η$颗粒的$ d $维schrödinger方程的动态,可以使用门复杂性$ \ tilde {o} \ bigl(ηdf \ text {poly} {poly}(\ log log}(\ log log(g'/ε)\ bigr)$ g'$ g'$ε$ε$, $ f $衡量潜力的时间融合力。与以前的最佳结果相比,这种指数改善了$ε$和$ g'$的依赖性,从$ \ text {poly}(g'/ε)$到$ \ text {poly}(\ log(g'/ε))$,并且在$ t $和$ d $上的依赖性改善了$ t $和$ d $,同时维持最佳绩效的效果。对于库仑相互作用,我们使用$η^{3}(d+η)T \ text {poly}(\ log(ηdtg'/(δε)))/Δ$一quate和两qubit Gates,以及另一个使用另一个使用另一个使用$η^{3}(4D)^{d/2} t \ text {poly}(\ log(ηdtg'/(δε))))/δ$一元和两倍的门和QRAM操作,$ t $是$ t $的进化时间和commote $Δ$Δ$Δ$ uniguls $Δ$ uniguls undeculs undeculs unund ocully unumbound coulomb互动。我们对几个计算问题进行了应用,包括对量子化学的更快的真实空间模拟,对均匀电子气体模拟的离散误差的严格分析以及对量子算法的二次改进,以避免在非Conconvex优化中逃脱鞍点。
Quantum simulation is a prominent application of quantum computers. While there is extensive previous work on simulating finite-dimensional systems, less is known about quantum algorithms for real-space dynamics. We conduct a systematic study of such algorithms. In particular, we show that the dynamics of a $d$-dimensional Schrödinger equation with $η$ particles can be simulated with gate complexity $\tilde{O}\bigl(ηd F \text{poly}(\log(g'/ε))\bigr)$, where $ε$ is the discretization error, $g'$ controls the higher-order derivatives of the wave function, and $F$ measures the time-integrated strength of the potential. Compared to the best previous results, this exponentially improves the dependence on $ε$ and $g'$ from $\text{poly}(g'/ε)$ to $\text{poly}(\log(g'/ε))$ and polynomially improves the dependence on $T$ and $d$, while maintaining best known performance with respect to $η$. For the case of Coulomb interactions, we give an algorithm using $η^{3}(d+η)T\text{poly}(\log(ηdTg'/(Δε)))/Δ$ one- and two-qubit gates, and another using $η^{3}(4d)^{d/2}T\text{poly}(\log(ηdTg'/(Δε)))/Δ$ one- and two-qubit gates and QRAM operations, where $T$ is the evolution time and the parameter $Δ$ regulates the unbounded Coulomb interaction. We give applications to several computational problems, including faster real-space simulation of quantum chemistry, rigorous analysis of discretization error for simulation of a uniform electron gas, and a quadratic improvement to a quantum algorithm for escaping saddle points in nonconvex optimization.