论文标题

有限的几乎简单组的小索引的最大亚组

Maximal subgroups of small index of finite almost simple groups

论文作者

Ballester-Bolinches, A., Esteban-Romero, R., Jiménez-Seral, P.

论文摘要

We prove in this paper that a finite almost simple group $R$ with socle the non-abelian simple group $S$ possesses a conjugacy class of core-free maximal subgroups whose index coincides with the smallest index $\operatorname{l}(S)$ of a maximal group of $S$ or a conjugacy class of core-free maximal subgroups with a fixed index $v_S \leq {\ operatorname {l}(s)^2} $,仅取决于$ s $。我们表明,$ s $的外部自动形态组的子组数量由$ \ log^3 {\ pereratatorName {l}(s)} $和$ \ operatatorName {l}(l}(s)^2 <| s | $。

We prove in this paper that a finite almost simple group $R$ with socle the non-abelian simple group $S$ possesses a conjugacy class of core-free maximal subgroups whose index coincides with the smallest index $\operatorname{l}(S)$ of a maximal group of $S$ or a conjugacy class of core-free maximal subgroups with a fixed index $v_S \leq {\operatorname{l}(S)^2}$, depending only on $S$. We show that the number of subgroups of the outer automorphism group of $S$ is bounded by $\log^3 {\operatorname{l}(S)}$ and $\operatorname{l}(S)^2 < |S|$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源