论文标题
Leibniz代数的可解决理想是Nilradical的最大延伸
Leibniz algebras whose solvable ideal is the maximal extension of the nilradical
论文作者
论文摘要
该论文专门用于所谓的完整莱布尼兹代数。众所周知,具有完整理想的谎言代数已被拆分。我们将证明,该结果对于莱布尼兹代数有效,其完整的理想是可解的代数,因此nilradical的编成编成等于Nilradical的发电机数量。
The paper is devoted to the so-called complete Leibniz algebras. It is known that a Lie algebra with a complete ideal is split. We will prove that this result is valid for Leibniz algebras whose complete ideal is a solvable algebra such that the codimension of nilradical is equal to the number of generators of the nilradical.