论文标题

通过雷诺的发散张力张量,一种数据驱动的方法,用于关闭RANS模型

A data-driven approach for the closure of RANS models by the divergence of the Reynolds Stress Tensor

论文作者

Berrone, Stefano, Oberto, Davide

论文摘要

在本文中,提出了一个新的数据驱动模型来关闭和提高rans方程的准确性。 Reynolds应力张量(RST)的差异是通过神经网络(NN)获得的,该神经网络(NN)的体系结构和输入选择可以保证Galilean和坐标框架旋转。前者源自NN的输入选择,而后者是从第一个差异扩展为向量的。该方法已被广泛用于针对各向异性RST或第一个差异的数据驱动模型,在这里提出了第一个差异。因此,提出了第一个与平均数量差异的构成关系以获得这种扩展。此外,一旦训练了提出的数据驱动方法,就无需运行任何经典的湍流模型来关闭方程。与标准的湍流模型相比,使用正方形管和周期性丘陵的流动测试来显示本方法的优势。

In the present paper a new data-driven model is proposed to close and increase accuracy of RANS equations. The divergence of the Reynolds Stress Tensor (RST) is obtained through a Neural Network (NN) whose architecture and input choice guarantee both Galilean and coordinates-frame rotation. The former derives from the input choice of the NN while the latter from the expansion of the divergence of the RST into a vector basis. This approach has been widely used for data-driven models for the anisotropic RST or the RST discrepancies and it is here proposed for the divergence of the RST. Hence, a constitutive relation of the divergence of the RST from mean quantities is proposed to obtain such expansion. Moreover, once the proposed data-driven approach is trained, there is no need to run any classic turbulence model to close the equations. The well-known tests of flow in a square duct and over periodic hills are used to show advantages of the present method compared to standard turbulence models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源