论文标题
强大的惯性导航辅助的概率地图匹配
Probabilistic Map Matching for Robust Inertial Navigation Aiding
论文作者
论文摘要
强大的协助惯性导航系统在GNSS贬低的环境中对于消除由惯性传感器固有的漂移和偏差引起的累积导航误差至关重要。执行此类辅助方法的一种方法是使用地球物理测量值的匹配,例如重量法,重力渐变法或磁力测定法,并具有已知的地理参考图。尽管概念很简单,但此地图匹配过程具有挑战性:测量本身很嘈杂;它们相关的空间位置尚不确定;测量值可能匹配地图中的多个点(即非唯一解决方案)。在本文中,我们提出了一个概率的多个假设跟踪器,以解决地图匹配问题并允许强大的惯性导航辅助。我们的方法通过概率数据关联解决了本地问题,并通过将基础平台运动学约束纳入跟踪器来解决。然后,使用无知的卡尔曼过滤器将地图匹配输出集成到导航系统中。此外,我们提供了局部地图信息密度的统计度量 - 地图特征变异性 - 并使用它来加权所提出算法的输出协方差。使用涉及重力图匹配的导航方案证明了所提出算法的有效性和鲁棒性。
Robust aiding of inertial navigation systems in GNSS-denied environments is critical for the removal of accumulated navigation error caused by the drift and bias inherent in inertial sensors. One way to perform such an aiding uses matching of geophysical measurements, such as gravimetry, gravity gradiometry or magnetometry, with a known geo-referenced map. Although simple in concept, this map matching procedure is challenging: the measurements themselves are noisy; their associated spatial location is uncertain; and the measurements may match multiple points within the map (i.e. non-unique solution). In this paper, we propose a probabilistic multiple hypotheses tracker to solve the map matching problem and allow robust inertial navigation aiding. Our approach addresses the problem both locally, via probabilistic data association, and temporally by incorporating the underlying platform kinematic constraints into the tracker. The map matching output is then integrated into the navigation system using an unscented Kalman filter. Additionally, we present a statistical measure of local map information density -- the map feature variability -- and use it to weight the output covariance of the proposed algorithm. The effectiveness and robustness of the proposed algorithm are demonstrated using a navigation scenario involving gravitational map matching.