论文标题

使用计算机视觉技术进行操作监控的公共路灯图像的数据集

A Dataset of Images of Public Streetlights with Operational Monitoring using Computer Vision Techniques

论文作者

Mavromatis, Ioannis, Stanoev, Aleksandar, Carnelli, Pietro, Jin, Yichao, Sooriyabandara, Mahesh, Khan, Aftab

论文摘要

提出了街道灯图像的数据集。我们的数据集由$ \ sim350 \ textrm {k} $图像组成,该图像从英国南格洛斯特郡(South Gloucestershire)地区安装的140个雨伞节点组成。每个伞状节点都安装在灯柱的杆上,并配备了覆盆子Pi摄像头模块V1,朝向天空和灯柱灯泡。每个节点每天以每小时24小时收集图像。数据收集跨越了六个月。 所拍摄的每个图像都记录为数据集中的单个条目,以及灯柱的全局定位系统(GPS)坐标。数据集中的所有条目均已根据灯柱的操作进行后加工和标记,即灯柱是否打开还是关闭。该数据集可用于训练深层神经网络,并生成预先培训的模型,为智能城市CCTV应用,智能天气检测算法或街道基础设施监控提供功能表示。该数据集可在\ url {https://doi.org/10.5281/zenodo.6046758}找到。

A dataset of street light images is presented. Our dataset consists of $\sim350\textrm{k}$ images, taken from 140 UMBRELLA nodes installed in the South Gloucestershire region in the UK. Each UMBRELLA node is installed on the pole of a lamppost and is equipped with a Raspberry Pi Camera Module v1 facing upwards towards the sky and lamppost light bulb. Each node collects an image at hourly intervals for 24h every day. The data collection spans for a period of six months. Each image taken is logged as a single entry in the dataset along with the Global Positioning System (GPS) coordinates of the lamppost. All entries in the dataset have been post-processed and labelled based on the operation of the lamppost, i.e., whether the lamppost is switched ON or OFF. The dataset can be used to train deep neural networks and generate pre-trained models providing feature representations for smart city CCTV applications, smart weather detection algorithms, or street infrastructure monitoring. The dataset can be found at \url{https://doi.org/10.5281/zenodo.6046758}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源