论文标题
Trajgen:以自动驾驶的反应性和可行的代理行为产生现实和多样的轨迹
TrajGen: Generating Realistic and Diverse Trajectories with Reactive and Feasible Agent Behaviors for Autonomous Driving
论文作者
论文摘要
具有反应性和可行的代理行为的现实和多样化的模拟场景可用于验证和验证自动驾驶系统性能,而无需依赖昂贵且耗时的现实世界测试。现有的模拟器依靠基于启发式的行为模型来用于背景车辆,这些模型无法在现实世界中捕获复杂的互动行为。为了弥合模拟与现实世界之间的差距,我们提出了Trajgen,这是一个两阶段的轨迹生成框架,可以直接从人类的演示中捕获更现实的行为。特别是,Trajgen由多模式轨迹预测阶段和基于增强学习的轨迹修饰阶段组成。在第一阶段,我们为轨迹预测模型提出了一种新型的辅助路线,以在可驱动区域生成多模式的多种轨迹。在第二阶段,增强学习用于跟踪预测的轨迹,同时避免碰撞,这可以提高生成的轨迹的可行性。此外,我们开发了一个数据驱动的模拟器i-SIM,该模拟器可用于基于自然主义驾驶数据并行训练增强学习模型。 I-SIM中的车辆模型可以保证Trajgen生成的轨迹满足车辆运动学约束。最后,我们提供了全面的指标来评估模拟场景的生成的轨迹,这表明Trajgen在忠诚度,反应性,可行性和多样性方面优于轨迹预测或逆增强学习。
Realistic and diverse simulation scenarios with reactive and feasible agent behaviors can be used for validation and verification of self-driving system performance without relying on expensive and time-consuming real-world testing. Existing simulators rely on heuristic-based behavior models for background vehicles, which cannot capture the complex interactive behaviors in real-world scenarios. To bridge the gap between simulation and the real world, we propose TrajGen, a two-stage trajectory generation framework, which can capture more realistic behaviors directly from human demonstration. In particular, TrajGen consists of the multi-modal trajectory prediction stage and the reinforcement learning based trajectory modification stage. In the first stage, we propose a novel auxiliary RouteLoss for the trajectory prediction model to generate multi-modal diverse trajectories in the drivable area. In the second stage, reinforcement learning is used to track the predicted trajectories while avoiding collisions, which can improve the feasibility of generated trajectories. In addition, we develop a data-driven simulator I-Sim that can be used to train reinforcement learning models in parallel based on naturalistic driving data. The vehicle model in I-Sim can guarantee that the generated trajectories by TrajGen satisfy vehicle kinematic constraints. Finally, we give comprehensive metrics to evaluate generated trajectories for simulation scenarios, which shows that TrajGen outperforms either trajectory prediction or inverse reinforcement learning in terms of fidelity, reactivity, feasibility, and diversity.