论文标题
一类奇异双线性最大功能
A class of singular bilinear maximal functions
论文作者
论文摘要
lebesgue空间界$ l^{p_1}({\ mathbb r}^1)\ times l^{p_2}}(^1)\ to l^q({\ Mathbb r}^1)$是为某些最大双线性操作员建立的。证明将三线性平滑不平等与Calderón-Zygmund理论结合在一起。 已经添加了对其他作者对一个观察的重叠工作的引用。
Lebesgue space bounds $L^{p_1}({\mathbb R}^1) \times L^{p_2}(^1) \to L^q({\mathbb R}^1)$ are established for certain maximal bilinear operators. The proof combines a trilinear smoothing inequality with Calderón-Zygmund theory. A reference to overlapping work of other authors on one observation has been added.