论文标题
使用网格对偏微分方程的物理无监督学习
Physics-constrained Unsupervised Learning of Partial Differential Equations using Meshes
论文作者
论文摘要
用物理方程知识增强神经网络已成为解决从流体流到电磁学的各种物理问题的有效方法。图形神经网络在准确地表示不规则的对象和学习动态方面表现出希望,但迄今为止需要通过大型数据集进行监督。在这项工作中,我们自然地表示网格为图形,使用图形网络处理这些图形,并制定基于物理的损失,以为部分微分方程(PDE)提供无监督的学习框架。我们将结果定量地比较了经典的数值PDE求解器,并表明我们的计算有效方法可以用作实时调整边界条件并保持足够接近基线解决方案的交互式PDE求解器。我们固有的可区分框架将使PDE求解器在交互式设置中的应用,例如基于模型的软体型变形的控制,或在需要完全可区分的管道的基于梯度的优化方法中。
Enhancing neural networks with knowledge of physical equations has become an efficient way of solving various physics problems, from fluid flow to electromagnetism. Graph neural networks show promise in accurately representing irregularly meshed objects and learning their dynamics, but have so far required supervision through large datasets. In this work, we represent meshes naturally as graphs, process these using Graph Networks, and formulate our physics-based loss to provide an unsupervised learning framework for partial differential equations (PDE). We quantitatively compare our results to a classical numerical PDE solver, and show that our computationally efficient approach can be used as an interactive PDE solver that is adjusting boundary conditions in real-time and remains sufficiently close to the baseline solution. Our inherently differentiable framework will enable the application of PDE solvers in interactive settings, such as model-based control of soft-body deformations, or in gradient-based optimization methods that require a fully differentiable pipeline.