论文标题

脱节性高度环境,sidon套装和弱混合操作员

Disjoint hypercyclicity, Sidon sets and weakly mixing operators

论文作者

Cardeccia, Rodrigo

论文摘要

我们证明,一组有限的自然数量$ j $满足$ j \ cup \ {0 \} $不是sidon,并且仅当任何操作员$ t $时,$ \ \ \ {t^j:j \} $ in J \} $ in J \ \} $的脱节超循环性意味着$ T $弱混合。作为一个应用程序,我们显示存在非弱混合操作员$ t $的存在,因此每个$ n $ $ t \ oplus t^2 \ ldots \ oplus t^n $都是超循环。

We prove that a finite set of natural numbers $J$ satisfies that $J\cup\{0\}$ is not Sidon if and only if for any operator $T$, the disjoint hypercyclicity of $\{T^j:j\in J\}$ implies that $T$ is weakly mixing. As an application we show the existence of a non weakly mixing operator $T$ such that $T\oplus T^2\ldots \oplus T^n$ is hypercyclic for every $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源