论文标题
1形对称性和非凡的Argyres-Douglas理论的动态后果
Dynamical consequences of 1-form symmetries and the exceptional Argyres-Douglas theories
论文作者
论文摘要
较高形式的对称性已被证明在约束许多量子场理论的动力学方面有用。在$(g,g')$类型的Argyres-Douglas(AD)理论的背景下,我们发现1形式的对称性在Higgs分支流下是不变的,并且它们是由无问题的广告理论Higgs Branch上的一般点上的不可能的扇区捕获的。结果,具有非平凡的1形对称性对3D的AD理论的维度还原导致自由扇区。我们利用这些观察结果以及其他结果来系统地提出$(a_n,e_m)$类型的广告理论的镜像理论。作为这些发现的副产品,我们发现了许多重要的结果:所有$ t [g] $的翻转双重性具有简单的组$ g $,包括杰出的二元; $ \ MATHCAL {S} $对特殊仿射Dynkin图的描述,使所有规格组都是特殊的统一; $ d_ {h^\ vee_g}(g)$的镜像理论的普遍性,$ h^\ vee_g $ $ g $的双coxeter号码;以及$(a_n,e_m)$理论中2组结构的微不足道。
Higher-form symmetries have proved useful in constraining the dynamics of a number of quantum field theories. In the context of the Argyres-Douglas (AD) theories of the $(G,G')$ type, we find that the 1-form symmetries are invariant under the Higgs branch flow, and that they are captured by the non-Higgsable sector at a generic point on the Higgs branch of the AD theory in question. As a consequence, dimensional reduction of an AD theory with a non-trivial 1-form symmetry to 3d leads to a free sector. We utilize these observations, along with other results, to propose systematically the mirror theories for the AD theories of the $(A_n, E_m)$ type. As a by-product of these findings, we discover many important results: the Flip-Flip duality for all $T[G]$ theories with simply-laced group $G$, including the exceptional ones; the class $\mathcal{S}$ descriptions of exceptional affine Dynkin diagram such that all gauge groups are special unitary; the universality of the mirror theories for $D_{h^\vee_G}(G)$ with $h^\vee_G$ the dual Coxeter number of $G$; and the triviality of the 2-group structure in the $(A_n, E_m)$ theories.