论文标题
从光场进行多模式深度估计
Towards Multimodal Depth Estimation from Light Fields
论文作者
论文摘要
近年来,光场应用,尤其是光场渲染和深度估计。虽然最新的光场渲染方法很好地处理了半透明和反射对象,但深度估计方法要么完全忽略这些情况,要么仅带来较弱的性能。我们认为,即使在不同深度的多个对象有助于单个像素的颜色时,这是当前方法仅考虑一个“真实”深度。基于输出后深度分布而不是仅单个估计的简单想法,我们开发并探索了几种基于深度学习的方法。此外,我们贡献了第一个“多模式光场深度数据集”,其中包含所有对像素颜色有助于的对象的深度。这使我们能够监督多模式深度预测,并通过测量预测的后代的KL差异来验证所有方法。通过我们的彻底分析和新颖的数据集,我们旨在开始一系列新的深度估计研究系列,以克服该领域的一些长期局限性。
Light field applications, especially light field rendering and depth estimation, developed rapidly in recent years. While state-of-the-art light field rendering methods handle semi-transparent and reflective objects well, depth estimation methods either ignore these cases altogether or only deliver a weak performance. We argue that this is due current methods only considering a single "true" depth, even when multiple objects at different depths contributed to the color of a single pixel. Based on the simple idea of outputting a posterior depth distribution instead of only a single estimate, we develop and explore several different deep-learning-based approaches to the problem. Additionally, we contribute the first "multimodal light field depth dataset" that contains the depths of all objects which contribute to the color of a pixel. This allows us to supervise the multimodal depth prediction and also validate all methods by measuring the KL divergence of the predicted posteriors. With our thorough analysis and novel dataset, we aim to start a new line of depth estimation research that overcomes some of the long-standing limitations of this field.