论文标题
基于智能传感器的能源分解的有效局部变压器
Efficient Localness Transformer for Smart Sensor-Based Energy Disaggregation
论文作者
论文摘要
基于现代智能传感器的能源管理系统利用非侵入性负载监控(NILM)实时预测和优化设备负载分布。 NILM或能量分解,是指在聚合的电信号(即主通道上的智能传感器)上进行的电力使用分解。基于使用感觉技术的实时设备功率预测,能量分解具有提高电力效率和减少能源消耗的巨大潜力。随着变压器模型的引入,NILM在预测设备功率读数方面取得了重大改进。然而,由于O(l^2)复杂性W.R.T.,变压器的效率较低。序列长度l。此外,由于本地环境中缺乏电感偏差,变形金刚无法以序列到点设置捕获局部信号模式。在这项工作中,我们提出了一个有效的局部变压器,用于非侵入性负载监控(ELTRANSFORMER)。具体而言,我们利用归一化功能并切换矩阵乘法的顺序以近似自我注意力并降低计算复杂性。此外,我们介绍了局部注意力头和相对位置编码的局部建模,以增强提取短期局部模式的模型能力。据我们所知,EltransFormer是第一个解决NILM计算复杂性和局部性建模的NILM模型。通过广泛的实验和定量分析,我们证明了所提出的Eltransformer的效率和有效性,与最新的基线相比,提出的有了显着改善。
Modern smart sensor-based energy management systems leverage non-intrusive load monitoring (NILM) to predict and optimize appliance load distribution in real-time. NILM, or energy disaggregation, refers to the decomposition of electricity usage conditioned on the aggregated power signals (i.e., smart sensor on the main channel). Based on real-time appliance power prediction using sensory technology, energy disaggregation has great potential to increase electricity efficiency and reduce energy expenditure. With the introduction of transformer models, NILM has achieved significant improvements in predicting device power readings. Nevertheless, transformers are less efficient due to O(l^2) complexity w.r.t. sequence length l. Moreover, transformers can fail to capture local signal patterns in sequence-to-point settings due to the lack of inductive bias in local context. In this work, we propose an efficient localness transformer for non-intrusive load monitoring (ELTransformer). Specifically, we leverage normalization functions and switch the order of matrix multiplication to approximate self-attention and reduce computational complexity. Additionally, we introduce localness modeling with sparse local attention heads and relative position encodings to enhance the model capacity in extracting short-term local patterns. To the best of our knowledge, ELTransformer is the first NILM model that addresses computational complexity and localness modeling in NILM. With extensive experiments and quantitative analyses, we demonstrate the efficiency and effectiveness of the the proposed ELTransformer with considerable improvements compared to state-of-the-art baselines.